Emerson 20002158 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Emerson 20002158, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Emerson 20002158 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Emerson 20002158. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Emerson 20002158 should contain:
- informations concerning technical data of Emerson 20002158
- name of the manufacturer and a year of construction of the Emerson 20002158 item
- rules of operation, control and maintenance of the Emerson 20002158 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Emerson 20002158 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Emerson 20002158, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Emerson service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Emerson 20002158.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Emerson 20002158 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Installation Manual 20002158, Rev DI March 2014 Micro Motion ® ELITE ® Coriolis Flow and Density Sensors[...]

  • Page 2

    Safety and approval information This Micro Motion product complies with all applicable European directives when properly installed in accordance with the instructions in this manual. Refer to the EC declaration of conformity for directives that apply to this product. The EC declaration of conformity, with all applicable European directives, and the[...]

  • Page 3

    Contents Chapter 1 Planning ........................................................................................................................... 1 1.1 Installation checklist ........................................................................................................................1 1.2 Best practices ............................[...]

  • Page 4

    Contents ii Micro Motion ELITE[...]

  • Page 5

    1 Planning Topics covered in this chapter: • Installation checklist • Best practices • Temperature limits • Recommendations for hygienic and self-draining applications 1.1 Installation checklist □ Make sure that the hazardous area specified on the approval tag is suitable for the environment in which the meter will be installed. □ Verif[...]

  • Page 6

    □ For optimal performance, install the sensor in the preferred orientation. The sensor will work in any orientation as long as the flow tubes remain full of process fluid. Preferred sensor orientation Table 1-3: Process Preferred orientation Alternate orientations Liquids Gases Slurries □ Install the meter so that the flow direction arrow on th[...]

  • Page 7

    • There are no pipe run requirements for Micro Motion sensors. Straight runs of pipe upstream or downstream are unnecessary. • If the sensor is installed in a vertical pipeline, liquids and slurries should flow upward through the sensor. Gases may flow upward or downward. • Keep the sensor tubes full of process fluid. • For halting flow thr[...]

  • Page 8

    Ambient and process temperature limits for ELITE CMF***M/L/H/P (excludes cryogenic modifications) and CMFS007-015 meters Figure 1-1: 140 (60) –40 (–40) 113 (45) –148 (–100) –400 (–240) 400 (204) 140 (60) A B C D D A. Ambient temperature °F (°C) B. Process temperature in °F (°C) C. All available electronic options D. Extended or remo[...]

  • Page 9

    Ambient and process temperature limits for cryogenic ELITE meters Figure 1-3: 140 (60) –40 (–40) –148 (–100) –400 (–240) 176 (80) A B C D A. Ambient temperature °F (°C) B. Process temperature in °F (°C) C. All available electronic options D. Extended or remote mount electronics only Ambient and process temperature limits for high te[...]

  • Page 10

    Ambient and process temperature limits for Super Duplex ELITE meters Figure 1-5: 140 (60) –40 (–40) –148 (–100) –40 (–40) 400 (204) A B C D A. Ambient temperature °F (°C) B. Process temperature in °F (°C) C. All available electronic options D. Extended or remote mount electronics only 1.4 Recommendations for hygienic and self- drain[...]

  • Page 11

    Installation for self-draining applications Figure 1-6: A B C A. Process pipeline B. Direction of normal process flow C. Direction of drainage Planning Installation Manual 7[...]

  • Page 12

    2 Mounting Topics covered in this chapter: • Recommendations for lifting heavy meters • Mount the sensor • Mount electronics of high-temperature sensors • Mount a CMF010 sensor to a wall or pole • Mount a CMFS007, CMFS010 or CMFS015 sensor in a bracket • Mount a CMFS025, CMFS040 or CMFS050 sensor in a wall mount bracket • Secure wafer[...]

  • Page 13

    Acceptable lifting points Figure 2-1: Center of gravity for large meters Figure 2-2: A A. Typical center of gravity Note Complete and detailed dimensional drawings, including the location of the center of gravity, can be found through the product drawings link in our online store ( www.micromotion.com/onlinestore ). 2.2 Mount the sensor Use your co[...]

  • Page 14

    CAUTION! Do not lift the sensor by the electronics or purge connections. Lifting the sensor by the electronics or purge connections can damage the device. Mounting the sensor Figure 2-3: Notes • Do not use the sensor to support the piping. • The sensor does not require external supports. The flanges will support the sensor in any orientation. ([...]

  • Page 15

    Components of a high-temperature sensor Figure 2-4: B A C D A. Sensor B. Electronics C. Mounting bracket D. Flexible conduit (minimum bend radius 6" [152 mm]) With some large meter sizes, the meter may ship with the electronics attached to the sensor case. The meter cannot be operated in this configuration. Detach the electronics bracket from [...]

  • Page 16

    Removing electronics from the sensor case Figure 2-5: A A. Detach electronics from sensor case and mount to a wall or instrument pole Procedure • For wall mounting, use four 5/16" or four M8 bolts to secure the mounting bracket. Mounting 12 Micro Motion ELITE[...]

  • Page 17

    Wall-mount components Figure 2-6: A B C A. Wall or flat surface B. Electronics (enhanced core processor shown) C. Flexible conduit • For mounting to an instrument pole, use a 2-inch U-bolt pipe kit to secure the mounting bracket. Mounting Installation Manual 13[...]

  • Page 18

    Pole-mount components Figure 2-7: A B C A. Instrument pole B. Electronics (enhanced core processor shown) C. Flexible conduit 2.4 Mount a CMF010 sensor to a wall or pole The CMF010 sensor has an optional mounting configuration for use with small or flexible pipeline. If the pipeline adequately supports the sensor, this procedure can be skipped. 1. [...]

  • Page 19

    Optional mounting for CMF010 sensors Figure 2-8: A B C A. Two user-supplied 5/16" (M8) bolts B. Junction box or core processor (junction box shown) C. Mounting surface 2. If necessary, install rigid standoffs between the sensor and the mounting surface. 3. Using two user-supplied 5/16" (M8) bolts (minimum length 2 1/4" [58 mm]), secu[...]

  • Page 20

    Mounting bracket for CMFS007, CMFS010, and CMFS015 Figure 2-9: A B C A. Mounting bracket B. Mounting holes C. Supplied U-bolts 2.6 Mount a CMFS025, CMFS040 or CMFS050 sensor in a wall mount bracket The CMFS025, CMFS040, and CMFS050 sensors have an optional wall mounting bracket. 1. Assemble the bracket. Assembled wall mounting bracket for CMFS025, [...]

  • Page 21

    3. Place the sensor into the bracket. 4. Secure the sensor in the bracket with the supplied fasteners. CMFS025, CMFS040, or CMFS050 wall mounted using bracket Figure 2-11: 2.7 Secure wafer-style process connections A wafer-style connection lets you clamp the sensor into the pipeline. A wafer installation kit is shipped with a wafer-style sensor. 1.[...]

  • Page 22

    Wafer-style connection components Figure 2-12: D C B A E A. Flange nut B. Gasket (user-supplied) C. Alignment ring D. Flange bolt E. Sensor wafer 3. Insert the flange bolts through both process connections, and thread the flange nuts onto the bolts. 4. With your fingers, tighten the flange nuts. 5. Rotate the sensor alignment rings in the direction[...]

  • Page 23

    6. With a wrench, tighten the nuts in an alternating order. 2.8 Attach extended electronics If you ordered a sensor with extended electronics, you will need to install the extender onto the sensor case. Note Extended core processors are matched at the factory to specific sensors. Keep each core processor together with the sensor with which it was s[...]

  • Page 24

    Feedthrough and extender components Figure 2-14: G H E D C A B F A. Transmitter or core processor B. Extender C. O-ring D. Feedthrough E. Clamping ring F. Clamping screw G. Plastic plug H. Plastic cap 2. Loosen the clamping screw and remove the clamping ring. Leave the O-ring in place on the feedthrough. 3. Remove and recycle the plastic plug from [...]

  • Page 25

    3 Wiring Topics covered in this chapter: • Options for wiring • Connect 4-wire cable • Connect 9-wire cable 3.1 Options for wiring The wiring procedure you follow depends on which electronics option you have. Wiring procedures by electronics option Table 3-1: Electronics option Wiring procedure Integral transmitter No wiring is required betwe[...]

  • Page 26

    3.2 Connect 4-wire cable 3.2.1 Prepare the 4-wire cable Important For user-supplied cable glands, the gland must be capable of terminating the drain wires. Note If you are installing unshielded cable in continuous metallic conduit with 360º termination shielding, you only need to prepare the cable – you do not need to perform the shielding proce[...]

  • Page 27

    4-wire cable preparation Figure 3-1: Cable layout Run conduit to sensor Metal conduit Wrap the drain wires twice around the shield and cut off the excess drain wires. Micro Motion cable gland Pass the wires through the gland. Terminate the drain wires inside the gland. Cable glands Remove the core processor cover Go to the shielding procedure Done [...]

  • Page 28

    4-wire cable shielding Figure 3-2: Assemble the Gland 1. Fold the shield or braid back over the clamping insert and 1/8 inch (3 mm) past the O-ring. 2. Install the gland body into the conduit opening on the core processor housing. 3. Insert the wires through gland body and tighten the gland nut onto the gland body. Apply the Heat Shrink 1. Slide th[...]

  • Page 29

    • Twisted pair construction. • Applicable hazardous area requirements, if the core processor is installed in a hazardous area. • Wire gauge appropriate for the cable length between the core processor and the transmitter. Wire gauge Table 3-2: Wire gauge Maximum cable length VDC 22 AWG (0.35 mm 2 ) 300 ft (90 m) VDC 20 AWG (0.5 mm 2 ) 500 ft ([...]

  • Page 30

    Core processor terminals Figure 3-3: Connect the wires to the transmitter terminals (see the transmitter manual) Reinstall and tighten the core processor cover Core processor type From Step 1 or 2 Connect the wires to the core processor terminals: Red wire > Terminal 1 (Power supply +) Black wire > Terminal 2 (Power supply –) White wire >[...]

  • Page 31

    3. Match the wires color for color. For wiring at the transmitter or remote core processor, refer to the transmitter documentation. 4. Tighten the screws to hold the wires in place. 5. Ensure integrity of gaskets, then tightly close and seal the junction box cover and all housing covers on the transmitter or core processor. 6. Refer to the transmit[...]

  • Page 32

    4 Grounding The meter must be grounded according to the standards that are applicable at the site. The customer is responsible for knowing and complying with all applicable standards. Prerequisites Micro Motion suggests the following guides for grounding practices: • In Europe, IEC 79-14 is applicable to most installations, in particular Sections[...]

  • Page 33

    5 Supplementary information Topics covered in this chapter: • Purge the sensor case • About rupture disks 5.1 Purge the sensor case If the sensor has purge fittings, they should remain sealed at all times. After a purge plug has been removed, the sensor case should be purged with argon or nitrogen and resealed. Purging the case protects interna[...]

  • Page 34

    4. Connect the supply of nitrogen or argon gas to the inlet purge connection or open inlet purge line. Leave the outlet connection open. • Exercise caution to avoid introducing dirt, moisture, rust, or other contaminants into the sensor case. • If the purge gas is heavier than air (such as argon), locate the inlet lower than the outlet, so that[...]

  • Page 35

    Purge time (continued) Table 5-1: Sensor model Purge rate, in ft 3 /hr (l/h) Time, in minutes CMFS100 20 (566) 6 CMFS150 20 (566) 6 7. At the appropriate time, shut off the gas supply, then immediately seal the purge outlet and inlet connections with the purge plugs. Note Avoid pressurizing the sensor case. If pressure inside the case elevates abov[...]

  • Page 36

    *20002158* 20002158 Rev DI 2014 Micro Motion Inc. USA Worldwide Headquarters 7070 Winchester Circle Boulder, Colorado 80301 T +1 303-527-5200 T +1 800-522-6277 F +1 303-530-8459 www.micromotion.com Micro Motion Europe Emerson Process Management Neonstraat 1 6718 WX Ede The Netherlands T +31 (0) 318 495 555 F +31 (0) 318 495 556 www.micromotion.nl M[...]