Micronics 216 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Micronics 216, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Micronics 216 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Micronics 216. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Micronics 216 should contain:
- informations concerning technical data of Micronics 216
- name of the manufacturer and a year of construction of the Micronics 216 item
- rules of operation, control and maintenance of the Micronics 216 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Micronics 216 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Micronics 216, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Micronics service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Micronics 216.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Micronics 216 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    1 PORTAFLOW 216 Flowmeter Operating Manual Micron ics Ltd, Knaves Beech Busin ess Cen tre, Davies Way, Loudw ater, H igh Wy com be, Buc ks. HP10 9QR TEL : +44 (0)1628 810456 FA X: +44 ( 0)1628 531540 e-m ail: sales@ micronicsltd.co.uk www.micronicsltd.co.uk Publication: March 2001 Document Num ber 740-1001D Software Version: 1.00[...]

  • Page 2

    2 CONTENTS Page No Introduction 2 Fast track procedure 3-4 Parts and accessories 4 Battery and Charg er 5 Transducers/Separation Distance/Fluid Types 6 Program ming – Main Menu 6 Main Menu – Quick Start 6-9 Main Menu – View/Edit site data 9-10 Main Menu – Select sensor mode 11 Main Menu – Set up Instrum ent 12 Pulse output/ Display/Sign a[...]

  • Page 3

    3 Select Qu ick Start - Press ENTER . Dimension Units? – Scroll to select units required, pres s ENTER . Pipe OD – Enter data, pr ess ENT ER . Pipe Wall T hickness – Enter data, pres s ENT ER. Pipe Lining Thickn ess – Enter data, press ENTER . ENT ER Zero if ther e is no lining on the application. Select Wall M aterial – Select using s cr[...]

  • Page 4

    4 For Reflex Mode attach the gu ide rail (Figure 3) to the pipe as shown below . Turn the locking n ut on the fix ed transducer an ti-clockw ise, screw ing it down on to the pipe surf ace. Do not over-tig hten , caus ing the g uide rail to lift of f the pipe. Set the separation distance (Figure 3) by sliding the floating transducer along the scale [...]

  • Page 5

    5 Figure 5:- Battery mains charger. Is supplied with additional plug heads for use Worldw ide. The charger is rated 90Vac to 265Vac 47/63m hz @ 1.1A Battery Circuit A battery manag ement circu it controls the battery recharg e. The circuit helps to prevent the batteries from being damaged thro ugh ove rcha r ging. T he c irc ui t auto matica l ly c[...]

  • Page 6

    6 Separation Distance The instrum ent calculates the separation dist ance w hen all param eters have been entered via the k eypad. Al so the instrum ent calcu lates the m axim um flow velocity allowed w ith th e standard sens ors and indicates w h ether Reflex or Diagon al mode s hould be u sed. Ultrasonic Couplant Ultrasonic couplan t/grease m ust[...]

  • Page 7

    7 The instrument no w asks for the Pipe outside diameter? A fter entering th e outside diameter in m illimeters press ENTER . QUICK START Dimen sion un its mm Pipe O.D.? 58.0 Pipe wall thickness now appears on the display. Enter the pipe wall th ickness in m illimeters, then press ENTER. QUICK START Dimen sion un its MILLIMETRES Pipe O.D.? 58.0 Wal[...]

  • Page 8

    8 QUICK START Select pipe lining m aterial: Steel Rubber Glass Epoxy Concre te Other (m ps) Select fluid type now appears on the display . Use the scroll keys to select the fluid ty pe and press ENTER . If the liquid is not listed select Other and enter a liquid s ound speed in m etres/second. The sou nd speed inform ation can be fo und in t he ba [...]

  • Page 9

    9 The display will n ow show the sensor seperation distance. Adjust the m oveable sensor to the required distance. Press ENTER to read flow . READ FLO W now appears on the dis play. Batt CHRG Sig 48% (ERROR MESSAGES APP EAR HERE) m/s When reading volum etric flow the instrum ent w ill display a positive and neg ative total. Selecting OPTIONS from t[...]

  • Page 10

    10 Pipe O.D. 58.0 Wall thick 4.0 Lini ng 0.0 Wall MILD STEEL Lining --------- Fluid WATER Read flow Exit Note : • Site Zero is alw ays the QUICK START data an d cannot be ch anged. • Changin g the data in any site is automatically saved w hen leaving this men u. Data will h ave to be re-entered to over ride th e old data. List Sites Selecting L[...]

  • Page 11

    11 Read Flow Selecting Read fl ow inform s the u ser of th e mode of operation an d the approxim ate m axim um flow rate . Press the appropriate key can chan ge the units required. Attach sensor set in REF LEX m ode Approx . max . flow : 7.22 m/ s ENTER to co ntinue SCROLL changes mod e Pre ssing ENTER asks the user to en ter a temperature in °C. [...]

  • Page 12

    12 Main Men u - Set Up Instrumen t Pulse Output K ey This can on ly be operat ed in fl ow m ode. Use the scroll key to move the cursor up or down th e display. To change the flow units press the key required. This will also change the f low un its wh en returning to the flow mode. Changin g the flow units w ill also re-scale the litres per pulse. P[...]

  • Page 13

    13 Sensor Parameters This facility is passw ord protected . It sto res sensor inform ation used by Micronics and is n ot available for the user. WARNING! Sensor shou ld only be edited followin g instruction from the factory Enter pas sw ord Factory Settings The facility is us ed by Micronics in the process of instrum ent calibration. Press ENT ER t[...]

  • Page 14

    14 Set Z ero Flow On some applic a tions and in so me conditions it may be that altho ugh there is no flow the instrument m ay show a small offset due to sy stem n oise. T he offset can be cancelled out and w ill increase the accuracy of the instru ment. Selectin g this option and pressing ENTER the display w ill show the f ollowing. Stop th e flow[...]

  • Page 15

    15 Measurement µ µ µ µ s A point in the sig nal transm itted, where the f low m easurem ent is taken from . It is used to see if the sign al is being taken from th e burst at the correct time to get the strong est signal. It is norm ally us ed on smaller pipes wh en the instrum ent is being u sed in dou ble or triple bou nce as sign als can som[...]

  • Page 16

    16 Warning Messages W1: CHECK SITE DATA This mes sage occurs w hen the application inf ormation has been entered in correctly an d the w rong sens ors have been attached to the w rong pipe s ize causing the sy stem timing to be in error. The site data needs to be ch ecked and the instru men t reprogram m ed. W2: SIGNAL TIMING POOR Unstable si gnal [...]

  • Page 17

    17 Enter a lining th ickness first This mes sage appears w hen in VIEW/EDIT SITE DATA the user has tried to enter a pipe lining m aterial before entering a thick ness. APPLICATION INF ORMATION The PORTAFL OW 216 is a Transi t Time u ltrasoni c flow m eter. It has been desig ned to w ork w ith Clam p On transducers, th us enablin g flow ing liqu id [...]

  • Page 18

    18 TRANSDUCER POSITIONING As th e transducers f or the Portaflow 216 are clamped to the ou tside surf ace of the pipe, the m eter has no w ay of determining exactly w hat is h appening to the liquid. The assumption therefore has to be made that th e liquid is flowing uniform ly alon g the pipe either under fu lly turbul ent conditions or under lami[...]

  • Page 19

    19 An u neven surf ace that prevents the transducers f rom sitting f lat on the surface of th e pipe can cause Signal Lev el and Zero Off set problem s. The follow ing procedu re is offered as a guide to g ood practice with respect to positionin g and moun ting the tran sducers. 1) Select the site follow ing the rules laid dow n on page 19 - Transd[...]

  • Page 20

    20 If the Portaflow 216 is to be us ed on lam inar flow applications it will be n ecessary to calculate the Rey nolds No f or each application. To calculate the Rey nolds No it is n ecessary to know the Kinem atic viscosity in Cen tistokes; th e flow velocity and the pipe insi de diameter. Please follow the table below MAX I MUM F LO W The max imu [...]

  • Page 21

    21 Figure 12: Attaching the sensor t o t he pipe Figure 13: Marking the Separation distance Figure 14: Positioning of the sensor cables Program the Electronics with the application data to obtain the calculated separation distance. Measure the circumference of the pipe and m ark a position at the halfway point. (Outside Diam eter of the pipe times [...]

  • Page 22

    22 PORTAFLOW™ 216 SPECIFICATION ENCLOSURE: Protection Class IP55 Material A BS Weigh t < 1.5 Kg Dim en sions 235 x 125 x 42 m m Display Graphics LCD display Key pad 1 6 Key Tactile Mem brane Connecti o ns IP6 5 Le mo Co nnecto rs Temperatu re Rang e 0°C to +50°C (operating ) -10° to +60° C (storage ) SUPPLY VOLTAGE: Pow er supply /ch arger[...]

  • Page 23

    23 Figure 15 :- POR T A FLOW 216 Flow Range PORTAFLOW 216 F LOW RA NGE - DIAGONA L MODE PORTAF LOW 216 FL OW RA NGE – REF LEX MODE WARRANTY The mat erial and w orkm ans hip of t he PORTAF LOW 216 is g uarant eed by MIC RONICS L TD for one y ear from the date of pu rchase prov ided the equi pmen t has been used for th e purpose f or wh ich it has [...]

  • Page 24

    24 LIQUID SOUND SPEEDS Liquid Sound Speeds Note: All the fo llowing so und speeds are calculat ed a t 25°C. The speed of sound in liquids at t emp eratures other t han 25°C are calcula t ed as follow s. Example: Substance Form Index Specific Gravity Sound Speed ∆ ∆ ∆ ∆ v/ºC - m/s / º C Glycol C 2 H 6 O 2 1.113 1658 2.1 Water, distilled [...]

  • Page 25

    25 Substance Form Index Specific Gravity Sound Speed ∆ ∆ ∆ ∆ v/ºC - m/s / º C Acetic anh ydride (22) (CH 3 CO) 2 O 1.082 (20ºC) 1180 2.5 Acetic acid, anh ydride (22) (C H 3 CO) 2 O 1.082 (20ºC) 1180 2.5 Acetic acid, nitrile C 2 H 3 N 0.783 1290 4.1 Acetic acid, ethy l ester (33) C 4 H 8 O 2 0.901 1085 4.4 Acetic acid, m ethy l ester C 3[...]

  • Page 26

    26 Cy clohexanol C 6 H 12 O 0.962 1454 3.6 Cy clohexanon e C 6 H 10 O 0.948 1423 4.0 Decane (46) C 10 H 22 0.730 1252 1-Decene (27) C 10 H 20 0.746 1235 4.0 n-Decyle ne (2 7 ) C 10 H 20 0.746 1235 4.0 Diacetyl C 4 H 6 O 2 0.99 1236 4.6 Diamy lamine C 10 H 23 N 1256 3.9 1,2 Dibrom o-eth ane (47) C 2 H 4 Br 2 2.18 995 trans- 1,2-Dibrom oethene(47) C [...]

  • Page 27

    27 Fluoro-benzen e (46) C 6 H 5 F 1.024 (20ºC) 1189 Formal dehy de, meth yl es ter C 2 H 4 O 2 0.974 1127 4.02 Formam ide CH 3 NO 1.134 (20ºC) 1622 2.2 Formic acid, am ide CH 3 NO 1.134 (20ºC) 1622 Freon R 12 774.2 Furfural C 5 H 4 O 2 1.157 1444 Furfury l alcohol C 5 H 6 O 2 1.135 1450 3.4 Fural C 5 H 4 O 2 1.157 1444 3.7 2-Furaldeh yde C 5 H 4[...]

  • Page 28

    28 2-Meth ylph enol (46) C 7 H 8 O 1.047 (20ºC) 1541 3-Meth ylph enol (46) C 7 H 8 O 1.034 (20ºC) 1500 Milk, h omog enized 1548 Morpholine C 4 H 9 NO 1.00 1442 3.8 Naphth a 0.76 1225 Natu ral Gas (37) 0.316 (- 103ºC) 753 Neon (45) Ne 1.207 (-246ºC) 595 Nitrobenzen e (46) C 6 H 5 NO 2 1.204 (20ºC) 1415 Nitrogen (45) N 2 0.808 (-199ºC) 962 Nitr[...]

  • Page 29

    29 Propyl ene (17,18,35) C 3 H 6 0.563 (-13ºC) 963 6.32 Py ridi ne C 6 H 5 N 0.982 1415 4.1 Refriger ant 11 ( 3,4 ) CCl 3 F 1.49 828.3 3.56 Refriger ant 12 ( 3) CCl 2 F 2 1.516 (- 40ºC) 774.1 4.24 Refri gerant 14 (14) CF 4 1.75 (-150ºC) 875.24 6.61 Refriger a nt 21 ( 3 ) CHCl 2 F 1.426 (0ºC) 891 3.97 Refriger a nt 22 (3 ) CHClF 2 1.491 (-69ºC)[...]

  • Page 30

    30 PORTAFLOW 216 Battery Charge circuit Operation. Charging Controller IC: A Maxim I C MAX712 or MAX 713 controls the Ni-C d and Ni-Mh battery charger. It has two modes, fast charg e and trickle charg e; an output indicates the fast-charg e status. In both m odes it supplies, via a PNP power transistor, a constant current to the battery, by keeping[...]

  • Page 31

    31 Quicker full charge: T he fastest way to fully charge the battery is to charg e for 4.5 hrs, then switch the power supply off and on again, thus re- starting the fast charg e for another 4.5 hr period, followed by trickle charg e. Warning: If the battery is getting warm, that would indicate that it is full, and the power supply should not be con[...]

  • Page 32

    32 Micronics Ltd Knaves Beech Bu siness C entre, Davie s Wa y, Lo udwater , Hi gh Wycombe , Bucks . HP10 9QR U.K. Telephone: +44 (0) 1628 810456 Fax: +44 (0) 1628 531540 www.mi c r o n ic s l td . c o . uk e-m ail – sales@micronicsltd.co.uk[...]