SSI America 7SL manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of SSI America 7SL, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of SSI America 7SL one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of SSI America 7SL. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of SSI America 7SL should contain:
- informations concerning technical data of SSI America 7SL
- name of the manufacturer and a year of construction of the SSI America 7SL item
- rules of operation, control and maintenance of the SSI America 7SL item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of SSI America 7SL alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of SSI America 7SL, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the SSI America service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of SSI America 7SL.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the SSI America 7SL item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    1 Instruction Manual PN 31302 MODEL 7SL HIGH/LO W LIMITRO L ® 7sl-0-00.p65 9/17/02, 2:35 PM 1[...]

  • Page 2

    2 1/16 DIN, FOUR DIGIT HIGH/LOW LIMITROL MODEL: 0 7 S L - 9 1 - 0 0 0 - 0 - 0 0 Field No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fields 1 through 4. BASE 07SL - Limitrol (High/Low Limit – shipped as High Limit) Field 5. INPUT 9 - TC types J, K, T, E, N, S, R, B, L, U, G, D, C and Platinel II; and Pt 100 RTD; 0 to 20 mAdc and 4 to 20 mAdc; 0 to 60 mV[...]

  • Page 3

    3 Unpack the Instrument Wiring Configuration Operating Parameters SV Congratulations Congratulations on your purchase of one of the easiest to configure high/low Limitrols on the market. After a 3 step configuration procedure, your process will be up and running. Guide to simple set-up To set-up the Limitrol only 3 steps are required: 1. Wire the i[...]

  • Page 4

    4 CAUTION: USE WIRE SUITABLE FOR 75°C MINIMUM. NOTES • For supply connections use No 16 AWG or larger wires rated for at least 75 °C. • Use copper conductors only. • Class 2 wiring must be a minimum of 1/4 inch from any Class 1 conductors. T ab le of Contents 1/16 DIN, FOUR DIGIT HIGH/LOW LIMITR OL .......... 2 Guide to simple set-up ......[...]

  • Page 5

    5 MOUNTING REQUIREMENTS Select a mounting location with the following characteristics: 1) Minimal vibration. 2) An ambient temperature range between 0 and 50°C (32 and 122 °F). 3) Easy access to the rear of the instrument. 4) No corrosive gases (sulfuric gas, ammonia, etc.). 5) No water or other fluid (i.e. condensation). 6) Relative humidity of [...]

  • Page 6

    6 DIMENSIONS AND PANEL CUTOUT 45 mm, -0, +0.6 mm (1.772 in, -0, +0.024 in) 45 mm, -0, +0.6 mm (1.772 in, -0, +0.024 in) 75 mm (2.953 in) 60 mm (2.362 in) 122 mm (4.803 in) w/ RS-485 105 mm (4.134 in) w/o RS-485 48 mm (1.890 in) 48 mm (1.890 in) 10 mm (0.394 in) 7sl-1-00.p65 9/17/02, 2:39 PM 6[...]

  • Page 7

    7 WIRING GUIDELINES Terminal Layout 1 3 4 5 6 7 8 9 10 2 11 13 14 15 12 RS485 NC OUT 2 C LINEAR NO C PWR LINE 100/240V ac 24 V ac/dc A/A' B/B' NO DIG 1 OUT 1 C + _ TC RTD + _ d a o L t n e r r u C C ( µ ) F R ( Ω ) P ) W ( d n a r o t s i s e R e g a t l o V r o t i c a p a C A m 0 4 <7 4 0 . 00 0 12 / 1c a V 0 6 2 A m 0 5 1 <1 .[...]

  • Page 8

    8 NOTE: 1) Do not run input wires with power cables. 2) High line resistance can cause measurement errors. 3) When shielded cable is used, ground it at one end only to avoid ground loop currents. 4) The input impedance is equal to: Less than 5 Ω for 20 mAdc input Greater than 1 M Ω for 60 mVdc input Greater than 400 K Ω for 5 Vdc and 10 Vdc i[...]

  • Page 9

    9 Thermocouple Compensating Cable Color Codes. Thermocouple Material T Copper Constantan J/L Iron Constantan K Nickel Chromium Nickel Aluminum R Platinum/Platinum 13% Rhodium S Platinum/Platinum 10% Rhodium E Chromel Constantan B Platinum 30% Rh Platinum 6% Rh N Nicrosil / Nisil British BS 1843 + White - Blue Blue + Yellow - Blue Black + Brown - Bl[...]

  • Page 10

    10 LOAD R C POWER LINE C.1) Relay Outputs The cable used for relay output wiring must be as far away as possible from input or communication cables. Relay output: Protected by varistor. OUT 1: Form C contact rating of 3 Amps/250 Vac resistive load. OUT 2: Form A Contact rating of 2 Amps/250 Vac resistive load. Number of operations: 2 x 10 5 at the [...]

  • Page 11

    11 D) Serial Interface For units built with optional RS-485 communication The RS-485 interface can connect up to 31 instruments with the remote master unit (see below). Maximum cable length: 1.5 km (9/10 mile) at 9600 baud. NOTE: According to EIA specification for RS-485: a) The “A” terminal of the generator shall be negative with respect to th[...]

  • Page 12

    12 PRELIMINARY HARDWARE SETTINGS 1) Remove the instrument from its case. 2) Set J106 according to the following table: E) Power Line and grounding R (S,T), L1 NOTE: 1) Before connecting the power line, check that the voltage is correct (see Model Number). 2) For supply connections use 16 AWG or larger wires rated for at least 75 °C. 3) Use copper [...]

  • Page 13

    13 Limitrol with RS-485 Limitrol without RS-485 7 5 3 1 8 6 4 2 J106 V101 7sl-1-00.p65 9/17/02, 2:39 PM 13[...]

  • Page 14

    14 CONFIGURATION KEY FUNCTIONS RESET In Configuration Mode, used only to scroll back parameters Used in Configuration Mode to decrease the parameter value. Used in Configuration Mode to increase the parameter value. FUNC Monitors/Modifies parameters. + Loads the default parameters. + FUNC or + FUNC Increases/decreases values at a higher rate when m[...]

  • Page 15

    15 r1 = Input Type and Range Value 0 = TC J From -100 to 1000 °C 1 = TC K From -100 to 1370 °C 2 = TC T From -200 to 400 °C 3 = TC E From -100 to 800 °C 4 = TC N From -100 to 1400 °C 5 = TC S From -50 to 1760 °C 6 = TC R From -50 to 1760 °C 7 = TC B From 0 to 1820 °C 8 = TC L From -100 to 900 °C 9 = TC U From -200 to 600 °C 10 = TC G From[...]

  • Page 16

    16 Control Output Function The relay output operates in fail-safe mode (relay de- energized during reset condition) and latching mode. The control output turns OFF when the setpoint is ex- ceeded when C1 = Hi, or C1 = Lo. (When C1 = Hi.Lo control output turns off when the process is greater than “Su” or less than “S1”). The control output r[...]

  • Page 17

    17 Ack. = Alarm Acknowledgment (For relay status see configuration parameter P3.) C3 = Reset at Power-up Auto = Automatic reset nAn = Manual reset C4 = Reset Memory 0 = The reset condition will be saved (at next power up it will be reactivated) 1 = The reset condition will be lost in case of power down C5 = Time Constant for Filter on Measured Valu[...]

  • Page 18

    18 (Hysteresis) ON ALM LED OFF Alarm status* Relay No alarm status ACK (Alarm threshold) FLASH FLASH Example for P2 = H.A.A.c ACK = Alarm acknowledgment from "AK" parameter or serial link. * Alarm Status: Relay energized (P3 = dir) Relay de-energized (P3 =rEV) Example for P2 = H.L. ACK = Alarm acknowledgment from "AK" parameter [...]

  • Page 19

    19 t1 = Timeout Selection tn10 = 10 second timeout tn30 = 30 second timeout d1 = Digital Input (contact closure) (This is a read only parameter) Enb = Digital input enabled dlS = Digital input disabled (The digital input is used as a remote process restart.) The configuration procedure is now complete. The display should show "COnF". 7sl-[...]

  • Page 20

    20 OPERATING MODE 1) Remove the instrument from its case. 2) Set switch V101 to the closed position. 3) Re-insert the instrument in its case. 4) Switch on the instrument. Normal Display Mode On powerup the device starts in the "Normal Display Mode." By pressing the or key, it is possible to change the displayed information; therefore, one[...]

  • Page 21

    21 Key Functions in Normal Display Mode “FUNC” = By pressing it, the display changes from “Normal Display Mode” to “Parameter Display Mode.” = Pressing it for more than ten seconds initiates the Lamp Test. During the Lamp Test the device functions normally while all display segments and LED's are lit with a 50% duty cycle. No timeo[...]

  • Page 22

    22 OPERATING PARAMETERS Some of the following parameters may not appear, depending on the configuration. Alarm Acknowledge (Available only if P1 = AL.p, AL.b or AL.d) Lower display: Upper display: OFF/ON Select ON and press the FUNC key in order to acknowledge the alarm. ON = Alarm Acknowledged OFF = Alarm Not Acknowledged Software Key (Skipped if [...]

  • Page 23

    23 ERROR MESSAGES Overrange, Underrange and Sensor Break Indications This device detects process variable faults (OVERRANGE, UNDERRANGE OR SENSOR BREAK). When the process variable exceeds the span limits established by configuration parameter r1 an OVERRANGE condition will appear as: An UNDERRANGE condition will appear as: A sensor break is signale[...]

  • Page 24

    24 DEFAULT PARAMETERS Loading Default Operating Parameters The control parameters can be loaded with predeter- mined default values. These are the settings loaded into the instrument prior to shipment from the factory. To load the default values proceed as follows: a) Press and hold the key and press the key; the displays will show: b) Press either[...]

  • Page 25

    25 d) Still holding the key, press the key; the display will show: e) Press the key to select Table 1 (European) or Table 2 (American) default parameters; the display will show: f) Press the FUNC key; the display will show: This indicates that the loading procedure has been initiated. After about 3 seconds the procedure is com- plete and the instru[...]

  • Page 26

    26 SPECIFICATIONS Case RABS Grey dark color (RAL 7043). Self-extinguishing degree V0 according to UL 94 Front panel Designed and tested for IP65 and NEMA 4X for indoor location (when panel gasket is installed). Tests were performed in accordance with IEC 529, CEI 70-1 and NEMA 250-1991 STD. Installation Panel mounting Rear Terminal Block 15 screw t[...]

  • Page 27

    27 Display Update Time 500 ms The display value can be filtered Reference Accuracy ± 0.2% fsv ±1 digit @ 25 °C and nominal power supply voltage. Temperature Drift Less than 200 ppm/°C of full span for mV and TC ranges 1, 2, 4, 5, 9, 14 (CJ excluded). Less than 300 ppm/°C of full span for mA/ V and TC ranges 11, 12, 13 (CJ excluded) Less than 4[...]

  • Page 28

    28 Source Impedance 100 Ω maximum for TC/mV input Less than 20 Ω per wire for RTD input Input Impedance Greater than 1 M Ω for TC/mV input Greater than 400 K Ω for 5V to 10V input range Less than 5 Ω for mA input Cold Junction Automatic compensation from 0 to 50 °C Digital Input Input from dry contact (voltage free) to restart process (o[...]

  • Page 29

    29 References UL 94 Tests for flammability of plastic materials for pans in devices and appliances CEI 70-1 (IEC 529) Degrees of protection provided by enclo- sures (IP Code) NEMA 250-1991 Enclosures for equipment (1000 Volts maximum) DIN 43700 Measurements and control instruments for panel mounting. Nominal front and cut-out dimensions. EN 50081-2[...]

  • Page 30

    30 CALIBRATION PROCEDURE Calibration parameters are logically divided into groups of two parameters each – initial scale value and final scale value. A calibration check is provided after entering the values of each group. It is also possible to perform a calibration check without making an entry: press the FUNC button twice when “OFF” is dis[...]

  • Page 31

    31 Procedure Switch on the instrument; the upper display will show “COnf”. Press the button; the upper display will show “CAL”. Using the and pushbuttons (buttons), it is possible to select between ON and OFF. To go to the next parameter without modifying the calibration, press the FUNC button when the display shows “OFF”. To enter a ca[...]

  • Page 32

    32 10 9 Measuring De vice Figure 4. Measure Temperature Near Terminals b) Wait a few minutes to allow temperature stabilization of the entire system (compensation cable, sensor, calibrator and instrument). c) The displays show “rJ” and “OFF”. Using the or button, make the readout value equal to the temperature measured by the measuring devi[...]

  • Page 33

    33 AL Current Input Initial Scale Value a) Connect calibrator and instrument as shown in Figure 7. 10 9 Figure 7. Calibrator Connection b) The upper display shows “OFF”, the lower displays shows “AL”. c) Set calibrator to 0.000 mA (even if the minimum range value is 4mA). d) Push the button; the display changes to “ON”. e) After a few s[...]

  • Page 34

    34 UL 10 VOLT Input Initial Scale Value a) Connect calibrator and instrument as shown in Figure 9. 10 9 Figure 9. Calibrator Connection b) The upper display shows “OFF”, the lower displays shows “UL”. c) Set calibrator to 0.000 V (even if the minimum range value is 2 V). d) Push the button; the display changes to “ON”. e) After a few se[...]

  • Page 35

    35 MAINTENANCE 1. Remove power from the power supply terminals and from relay output terminals. 2. Remove the instrument from case. 3. Using a vacuum cleaner or a compressed air jet (max. 3kg/cm 2 ) remove dust and dirt which may be present on the louvers and on the internal circuits, being careful to not damage the electronic components. 4. Clean [...]

  • Page 36

    Cincinnati, OH 800-666-4330 http://www .supersystems .com Manual Part No. 31302 7SL Copyright © 2001 Super Systems Inc. 170.IU0.LHL.S00 0 2 7sl-z-00.p65 9/17/02, 2:46 PM 36[...]