Quatech RS-232 SYNCHRONOUS manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Quatech RS-232 SYNCHRONOUS, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Quatech RS-232 SYNCHRONOUS one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Quatech RS-232 SYNCHRONOUS. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Quatech RS-232 SYNCHRONOUS should contain:
- informations concerning technical data of Quatech RS-232 SYNCHRONOUS
- name of the manufacturer and a year of construction of the Quatech RS-232 SYNCHRONOUS item
- rules of operation, control and maintenance of the Quatech RS-232 SYNCHRONOUS item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Quatech RS-232 SYNCHRONOUS alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Quatech RS-232 SYNCHRONOUS, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Quatech service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Quatech RS-232 SYNCHRONOUS.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Quatech RS-232 SYNCHRONOUS item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    MPA-100 RS-232 SYNCHRONOUS ADAPTER CARD User's Manual QUATECH, INC. TEL: (330) 665-9000 5675 Hudson Industrial Parkway FAX: (330) 665-9010 Hudson, Ohio 44236 http://www.quatech.com INTERFACE CARDS FOR IBM PC/AT AND PS/2[...]

  • Page 2

    [...]

  • Page 3

    Warranty Information Quatech Inc. warrants the MPA-100 to be free of defects for one (1) year from the date of purchase. Quatech Inc. will repair or replace any adapter that fails to perform under normal operating conditions and in accordance with the procedures outlined in this document during the warranty period. Any damage that results from impr[...]

  • Page 4

    The information contained in this document cannot be reproduced in any form without the written consent of Quatech, Inc. Likewise, any software programs that might accompany this document can be used only in accordance with any license agreement(s) between the purchaser and Quatech, Inc. Quatech, Inc. reserves the right to change this documentation[...]

  • Page 5

    Table of Contents 13-1 13. SPECIFICATIONS ............................................... . 12-1 12. DEFINITION OF INTERFACE SIGNALS ........................ . 11-6 11. EXTERNAL CONNECTIONS .................................... . 10-3 10.2 DCE Configuration ........................................... . 10-2 10.1 DTE Configuration ...................[...]

  • Page 6

    MPA-100 User's Manual iv[...]

  • Page 7

    1. INTRODUCTION The Quatech MPA-100 is a single channel, synchronous RS-232 compatible serial communication port for systems utilizing the architecture of the IBM AT personal computer or compatible. Figure 1 depicts the layout of th e MPA-100. Figure 1 MPA-100 Board Layout Quatech, Inc. MPA-100 U1 U2 SW1 SW2 U3 U4 U5 U6 U7 U8 X1 U16 U9 U10 U11 U12 [...]

  • Page 8

    MPA-100 User's Manual 1-2[...]

  • Page 9

    2. HARDWARE INSTALLATION If the default address and interrupt settin gs are sufficient, the MPA-100 can be quickly installed and put to use. The factory default settings are listed below in Table 1. Table 1 Default Resource Settings DMA/DRQ 1 DMA/DRQ 3 IRQ 5 300 hex RxDMA TxDMA Interrupt Address 1. If the default settings are correct, skip to step [...]

  • Page 10

    MPA-100 User's Manual 2-2[...]

  • Page 11

    3. ADDRESSING The MPA-100 occupies a continuous 8 byte block of I/O addresses. For example, if the base address is set to 300H, then the MPA-100 will occupy address locations 300H-307H. The base address of the MPA-100 may be set to any of the first 64 Kbytes (0 - FFFFH) of available I/O address space through the settings of dip switches SW1 and SW2[...]

  • Page 12

    The first four bytes, Base+0 through Base+3, of address space on the MPA-100 contain the internal registers of the SCC. The next two locations Base+4 and Base+5 contain the Communications Register and the Configuration Register. The last two address port locations are reserved for future use. The entire address range of the MPA-100 is shown in Tabl[...]

  • Page 13

    4. INTERRUPTS The MPA-100 supports eleven interrupt levels: IRQ2 -7, IRQ10 - 12, and IRQ14 - 15, and selects which interrupt level is in use through jumper packs J5 and J6. The MPA-100 has three interrupt sources: interrupt on terminal count, interrupt on test mode, and interrupt from the SCC. The interrupt source is selected by bits D4 and D5 of t[...]

  • Page 14

    4.1 Using Terminal Count to Generate Interrupts The MPA-100 allows the option of generating an interrupt whenever the Terminal Count (TC) signal is asserted. Terminal Count is an indicator generated by the system’s DMA controller, which signals that the number of transfers programed into the DMA controller’s transfer register have occurred. Thi[...]

  • Page 15

    5. JUMPER CONFIGURATIONS The MPA-100 utilizes various jumper blocks which allow the user to customize their hardware configuration. The following sections explain the function and setting of each of the jumper blocks on the MPA-100. 5.1 DTE/DCE Configuration - J2, J11, & J12 The jumper packs J2, J11, and J12 control the DTE/DCE configuration of[...]

  • Page 16

    5.3 Interrupt Level Selection - J5 & J6 Jumper blocks J5 and J6 select the interrupt level that the MPA-100 utilizes. Interrupt levels IRQ2 - IRQ7 reside on J5, while interrupt levels IRQ10 - IRQ12 and IRQ14 - IRQ15 reside on J6. Table 5 and Table 6 summarize the jumper block selections for J5 and J6. The IRQ levels are also marked on the MPA-1[...]

  • Page 17

    5.4 Transmit DMA Selection - J8 J8 Selects the DMA channel to be used for Transmit DMA. Three channels (1 - 3) are available on the MPA-100 for DMA. When selecting a DMA channel, both the DMA acknowledge (DACK) and the DMA request (DRQ) for the appropriate channel need to be selected. Table 7 summarizes the jumper block selections for J8. Table 7 J[...]

  • Page 18

    NOTE: Since it is illegal to perform DMA on transmit and receive on the same DMA channel, jumper blocks J7 and J8 should never have the same pins connected. This could result in damage to the system. 5.6 SYNCA to RLEN Control - J7 J7 controls the signal path from the RLEN bit in the Communications Register to the SYNCA input to the SCC. If J7 is in[...]

  • Page 19

    6. SCC GENERAL INFORMATION The Serial Communications Controller (SCC) is a dual channel, multi-protocol data communications peripheral. The MPA-100 provides a single channel for communications, however, to provide full DMA capabilities with complete modem control line support, both channels of the SCC can be utilized. The SCC can be software config[...]

  • Page 20

    6.1 Accessing the Registers The mode of communication desired is established and monitored through the bit values of the internal read and write registers. The register set of the SCC includes 16 write registers and 9 read registers. These registers only occupy four address locations, which start at the MPA-100's physical base address that is [...]

  • Page 21

    Example 2: Monitoring the status of the transmit and receive buffers in RR0 of Channel A. Register 0 is addressed by default if no register number is written to WR0 first. mov dx,base ; load base address add dx,ContA ; add control reg A offset (1) in ax,dx ; read the status Example 3: Write data into the transmit buffer of channel A. mov dx,base ; [...]

  • Page 22

    and receive clocks. These clocks can be programmed in WR11 to come from the RTXC pin, the TRXC pin, the output of the BRG, or the transmit output of the DPLL. Programming of the clocks should be done before enabling the receiver, transmitter, BRG, or DPLL. Table 11 SCC write register description. External/Status interrupt control WR15 Miscellaneous[...]

  • Page 23

    6.2 Baud Rate Generator Programming The baud rate generator (hereafter referred to as the BRG) of the SCC consists of a 16-bit down counter, two 8-bit time constant registers, and an output divide-by-two. The time constant for the BRG is programmed into WR12 (least significant byte) and WR13 (most significant byte). The equation relating the baud r[...]

  • Page 24

    6.3 SCC Data Encoding Methods The SCC provides four different data encoding methods, selected by bits D6 and D5 in WR10. These four include NRZ, NRZI, FM1 and FM0. The SCC also features a digital phase-locked loop (DPLL) that can be programmed to operate in NRZI or FM modes. Also, the SCC contains two features for diagnostic purposes, controlled by[...]

  • Page 25

    7. DIRECT MEMORY ACCESS Direct Memory Access (DMA) is a way of transferring data on the ISA bus directly to and from memory, resulting in high data transfer rates with very low CPU overhead. The ISA bus DMA channel(s) to be used are selected through jumper packs J6 and J7. The sources for these requests originate from the SCC and can be programmed [...]

  • Page 26

    When using the channel A DTR/REQ pin for transmit DMA the SCC must be programmed so that the request release timing of this pin is identical to the WAIT/REQ timing. This is done by setting bit D4 of write register 7 prime . NOTE: Even though the W/REQA pin can be used for both DMA transmit and DMA receive, obviously it cannot be used for both simul[...]

  • Page 27

    8. CONFIGURATION REGISTER The MPA-100 is equipped with an onboard register used for configuring information such as DMA enables, DMA sources, interrupt enables, and interrupt sources. Below is a detailed description of the Configuration Register. The address of this register is Base+5. Table 13 details the bit definitions of the Configuration Regis[...]

  • Page 28

    D1 -RXSRC, RECEIVE DMA SOURCE: When set (logic 1), this bit allows the source for Receive DMA to come from the W/REQB pin of channel B on the SCC. When cleared (logic 0), the source for Receive DMA comes from the W/REQA pin of channel A on the SCC. D0 -TXSRC, TRANSMIT DMA SOURCE: When set (logic 1), this bit allows the source for Transmit DMA to co[...]

  • Page 29

    9. COMMUNICATIONS REGISTER The MPA-100 is equipped with an onboard Communications Register which gives the user options pertaining to the clocks and testing. The user can specify the source and type of clock to be transmitted or received. Test mode bits pertain only to the DTE versions and can be ignored if using a DCE configured MPA-100. The addre[...]

  • Page 30

    D4 -REMOTE LOOPBACK ENABLE : When set (logic 1), this bit allows the DTE to test the transmission path up to and through the remote DCE to the DTE interface and the similar return transmission path. When cleared (logic 0), no testing occurs. If jumper J7 is in place the Remote Loopback is also used to control the Sync input of the Channel A data re[...]

  • Page 31

    10. DTE/DCE CONFIGURATION As indicated earlier in this manual, the MPA-100 can be configured as either a Data Terminal Equipment (DTE) or a Data Communications Equipment (DCE) device. The differences between these configurations include signal definitions, connector pin out , and clocking options. In order to simplify matters, an in depth descripti[...]

  • Page 32

    10.1 DTE Configuration The MPA-100 is configured as a DTE device by correctly setting jumper packs J2, J11 and J12. See Section 5, Table 3 for this configuration information. The control signals the DTE can generate are Request To Send (RTS) and Data Terminal Ready (DTR). It can receive the signals Carrier Detect (CD), Clear To Send (CTS), and Data[...]

  • Page 33

    The testing signals the DTE can generate are the Local Loopback Test (LL) and the Remote Loopback Test (RL). These signals are generated from the onboard Communications Register. When a Test Mode (TM) condition is received, an interrupt can be generated on the DTE. Table 16 summarizes the signals on the DTE. Table 16 DTE Signals INTM o r Bit D7 of [...]

  • Page 34

    Control signals the DCE can generate are the Clear to Send (CTS), Carrier Detect (CD), and Data Set Ready (DSR). It can receive the signals D ata Terminal Ready (DTR) and Ready to Send (RTS). All the control signals are handled through channel A of the SCC, with the exception of the CD signal, which is generated on the DTR/REQB pin (pin 24) of the [...]

  • Page 35

    Table 17 DCE Signals INTM or Bit D7 of Comm Reg X TM Bit D4 of Comm Reg X RL Bit D5 of Comm. Reg X LL RTXC/TRXCB pin of SCC X X RxCLK TRXCA pin of SCC X TxCLK DTR/REQB pin of SCC X CD DTR/REQA pin of SCC X DSR DCDA of SCC X DTR RTSA pin of SCC X CTS CTSA pin of SCC X RTS SCC Pin or Register Bit Generated Received Signal MPA-100 User's Manual 1[...]

  • Page 36

    MPA-100 User's Manual 10-6[...]

  • Page 37

    11. EXTERNAL CONNECTIONS The MPA-100 is designed to meet the RS-232 standard through a D-25 connector. The MPA-100 uses a D-25 short body male connector (labeled CN1) for both the DTE and DCE configurations. Jumper blocks J2, J11, and J12 configure the connector pin out. Table 18 and Table 19 display the pin out definitions for both configurations [...]

  • Page 38

    Table 19 DCE Connector Pin Definitions D7 of COMM REG X TEST MODE 25 RTXC pins on SCC X TXCLK (DTE) 24 - - - N/C 23 - - - N/C 22 D4 of COMM REG X RL 21 DCDB on SCC X DTR 20 - - - N/C 19 D5 of COMM REG X LL 18 RTXC pins on SCC X RXCLK (DCE) 17 - - - N/C 16 TRXCA on SCC X TXCLK (DCE) 15 - - - N/C 14 - - - N/C 13 - - - N/C 12 N/A N/A N/A RXCLK (DTE) 1[...]

  • Page 39

    Figure 6 MPA-100 DTE Output Connector Configuration 25 Test Mode (Output) 24 TxCLK (DTE) 23 N/C 22 N/C 21 RLBK (Output) 20 DTR 19 N/C 18 LLBK (Output) 17 RxCLK (DCE) 16 N/C 15 TxCLK (DCE) 14 N/C N/C 13 N/C 12 RxCLK (DTE) 11 N/C 10 N/C 9 CD 8 DGND 7 DSR 6 CTS 5 RTS 4 RxD 3 TxD 2 CGND 1 Figure 7 MPA-100 DCE Output Connector Configuration 14 N/C 15 Tx[...]

  • Page 40

    MPA-100 User's Manual 11-4[...]

  • Page 41

    12. DEFINITION OF INTERFACE SIGNALS CIRCUIT AB - Signal Ground  CONNECTOR NOTATION: DGND  DIRECTION: Not applicable This conductor directly connects the DTE circuit ground to the DCE circuit ground. CIRCUIT CC - DCE Ready (Data Set Ready)  CONNECTOR NOTATION: DSR  DIRECTION: From DCE This signal indicates the status of the local DCE by [...]

  • Page 42

    CIRCUIT DD - Receiver Signal Element Timing (RxClk - DCE Source)  CONNECTOR NOTATION: RXCLK (DCE)  DIRECTION: From DCE This signal, generated by the DCE, provides the DTE with element timing information pertaining to the data transmitted by the DCE. The DTE can use this information for its received data. CIRCUIT CA - Request To Send  CONNE[...]

  • Page 43

    CIRCUIT RL - Remote Loopback  CONNECTOR NOTATION: RLBK  DIRECTION: To DCE This signal provides a means whereby a DTE or a facility test center may check the transmission path up to and through the remote DCE to the DTE interface and the similar return transmission path. CIRCUIT TM - Test Mode  CONNECTOR NOTATION: TEST MODE  DIRECTION: F[...]

  • Page 44

    MPA-100 User's Manual 12-4[...]

  • Page 45

    13. SPECIFICATIONS Bus interface: IBM AT 16-bit bus Controller: Serial Communications Controller, 10 MHz (determined by user, typically an AMD 85C30). Interface: DTE: male D-25 connector Transmit drivers: RS-232: MC1488 or compatible Receive buffers: RS-232: MC1489 or compatible I/O Address range: 0000H - FFFFH Interrupt levels: IRQ 2-7, 10-12, 14-[...]

  • Page 46

    MPA-100 User's Manual Version 4.12 March 2004 Part No. 940-0037-412 MPA-100 User's Manual 13-2[...]