National Instruments 370760B-01 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of National Instruments 370760B-01, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of National Instruments 370760B-01 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of National Instruments 370760B-01. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of National Instruments 370760B-01 should contain:
- informations concerning technical data of National Instruments 370760B-01
- name of the manufacturer and a year of construction of the National Instruments 370760B-01 item
- rules of operation, control and maintenance of the National Instruments 370760B-01 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of National Instruments 370760B-01 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of National Instruments 370760B-01, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the National Instruments service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of National Instruments 370760B-01.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the National Instruments 370760B-01 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    MA TRIXx TM Xmath TM X µ Manual MA TRIXx Xmath Basics The MA TRIXx products and related items [...]

  • Page 2

    Support Worldwide Technical Support and Product Info rmation ni.com National Instruments Corporate H[...]

  • Page 3

    Important Information Warranty The media on which you receive National In struments software are wa[...]

  • Page 4

    Con ten ts 1 In tro duction 1 1 . 1 N o t a t i o n ....... ....... .......... ......... .... 1 1.[...]

  • Page 5

    iv CONTENTS 2.2.5 Obtaining Robust Control Mo dels for Ph ysica l Systems . . . . . . 28 2[...]

  • Page 6

    CONTENTS v 2 . 6 M o d e l R e d u c t i o n .. ....... .......... ......... .... 6 4 2.6.1 T run[...]

  • Page 7

    vi CONTENTS 3 . 5 S y s t e m I n t e r c o n n e c t i o n ..... .......... ......... .... 9 1 3[...]

  • Page 8

    CONTENTS vii 4.1.5 µ An alysis of the H ∞ C o n t r o l l e r ........ ......... .. 1 3 8 4.1[...]

  • Page 9

    viii CONTENTS A . 3 S y s t e m R e s p o n s e F u n c t i o n s .. ......... ....... .... 3 9 8 [...]

  • Page 10

    Chapter 1 In tro duction X µ is a suite of Xmath functions for the mo deling , ana lysis and syn [...]

  • Page 11

    2 CHAPTER 1. INTR ODUCTION Notatio n Meaning pdm Xmath parameter dependen t matrix data ob ject [...]

  • Page 12

    1.3. HO W TO A VOID RE ALL Y READING THIS MANUAL 3 1.3 Ho w to a v oid really reading this M[...]

  • Page 13

    Chapter 2 Ov erview of the Underlying Theory 2.1 In tro duction The material cov ered here is take[...]

  • Page 14

    6 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y several studies in volving pro cess control[...]

  • Page 15

    2.1. INTRODUCTION 7 Figure 2.1: The generic rob ust cont rol model stru cture T race( M ) trace[...]

  • Page 16

    8 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y is interpreted to mean that the signa l y [...]

  • Page 17

    2.1. INTRODUCTION 9 Euclidean norm. Given, x =    x 1 . . . x n    , the E[...]

  • Page 18

    10 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y F or p ersistent signals, where the ab ov [...]

  • Page 19

    2.1. INTRODUCTION 11 signals. Strictly sp eaking, sig nals in H 2 or H ⊥ 2 are not defined [...]

  • Page 20

    12 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y where σ max denotes the maxim um sing u[...]

  • Page 21

    2.2. MOD ELING UNCER T AIN SYSTEM S 13 The set o f all s ystems with b ounded ∞ -nor m is deno[...]

  • Page 22

    14 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y robust control model is therefo re a set [...]

  • Page 23

    2.2. MOD ELING UNCER T AIN SYSTEM S 15 as sp ecifying a maximum percen tage error b etw een P no[...]

  • Page 24

    16 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Real 0 0.5 1 -0.5 1.5 Imaginary -0.5 0 0.[...]

  • Page 25

    2.2. MOD ELING UNCER T AIN SYSTEM S 17 Figure 2.4: Unit y gain negativ e feedbac k for the exam[...]

  • Page 26

    18 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Figure 2.5 : Generic LFT mo del s tructur[...]

  • Page 27

    2.2. MOD ELING UNCER T AIN SYSTEM S 19 in an LFT format. The open-lo op system is described b[...]

  • Page 28

    20 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y The issue o f the inv er tibilit y o f ( [...]

  • Page 29

    2.2. MOD ELING UNCER T AIN SYSTEM S 21 Figure 2.6 : Example mo del: multiplicativ e output p e[...]

  • Page 30

    22 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Robust control models a re therefor e set [...]

  • Page 31

    2.2. MOD ELING UNCER T AIN SYSTEM S 23 Pac k ar d [19] discuss the implications of this a ssumpt[...]

  • Page 32

    24 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y systems. W e will now lo ok at other p o[...]

  • Page 33

    2.2. MOD ELING UNCER T AIN SYSTEM S 25 = Cz − 1 ( I − z − 1 A ) − 1 B + D = F [...]

  • Page 34

    26 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y where the transport dela y , T d , and th[...]

  • Page 35

    2.2. MOD ELING UNCER T AIN SYSTEM S 27 Putting all the pieces together gives an engine mo del [...]

  • Page 36

    28 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y and ∆ ∈ B∆ , with the structure de[...]

  • Page 37

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 29 An area of work, kno wn as iden tificat ion in H [...]

  • Page 38

    30 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Figure 2.7: LFT confi guration for cont[...]

  • Page 39

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 31 extend these approac hes t o the case where P ( s )[...]

  • Page 40

    32 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y 2.3.2 Assumptions for the H ∞ Design [...]

  • Page 41

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 33 that the eff ect of all disturban ces, w , at ev [...]

  • Page 42

    34 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y W e hav e partitioned the matr ix in to tw[...]

  • Page 43

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 35 Cho ose γ> 0 and fo rm the following Ha milto[...]

  • Page 44

    36 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y an y with a zero real part. In practice w[...]

  • Page 45

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 37 and the component s, C 1 x and D 12 u are orthog[...]

  • Page 46

    38 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y L ∞ = − Y ∞ C T 2 Z ∞ =( I −[...]

  • Page 47

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 39 a) Choose γ ≥ γ opt b) F orm H ∞ and J ?[...]

  • Page 48

    40 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y eigen v alue of X ∞ (and Y ∞ ) is di[...]

  • Page 49

    2.3. H ∞ AND H 2 DESI GN METHODOLOGIES 41 framew ork. W e again assume the simplif ying assu[...]

  • Page 50

    42 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Figure 2.8: Closed loop system, G ( s ),[...]

  • Page 51

    2.4. µ ANAL YSIS 43 descriptions are considered, where B again denotes the unit ball. Power : [...]

  • Page 52

    44 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Figure 2.9: Perturb ed closed lo op s yst[...]

  • Page 53

    2.4. µ ANAL YSIS 45 Consider the case where the model ha s only one full ∆ block ( m =1 a n d [...]

  • Page 54

    46 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y F u ( G ( s ) , ∆) stable fo r al l ∆[...]

  • Page 55

    2.4. µ ANAL YSIS 47 if and on ly if k µ ( G ( s )) k ∞ < 1 , wher e µ is taken wi th r[...]

  • Page 56

    48 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y F or the o ther extreme consider a single [...]

  • Page 57

    2.4. µ ANAL YSIS 49 Actually , the lower bound is always equal to µ but the implied optimizat[...]

  • Page 58

    50 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y and tw o blo ck structures, ∆ 1 (compa [...]

  • Page 59

    2.4. µ ANAL YSIS 51 2.4.6 State-sp ace Robustness Analysis T ests W e will lo ok at some more [...]

  • Page 60

    52 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Therefore µ 1 ( A ) < 1 is equiv alen[...]

  • Page 61

    2.4. µ ANAL YSIS 53 Figure 2.10: P erturb ed system for st ate-space robust ness tests[...]

  • Page 62

    54 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Note that the nominal system is given by [...]

  • Page 63

    2.4. µ ANAL YSIS 55 iii ) There exists a c onstant β ∈ [0 , 1] s uch that for e ach ?[...]

  • Page 64

    56 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y i ) State-spa ce upp er bound: inf D s [...]

  • Page 65

    2.4. µ ANAL YSIS 57 The gap betw een the state- space (or constant D ) upp er b o und and the fr[...]

  • Page 66

    58 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y 2.4.7 Analysis with b oth Real and Compl[...]

  • Page 67

    2.5. µ SYNTHESIS AND D - K ITERA TION 59 Figure 2.11: The generic in terconnecti o n structu re [...]

  • Page 68

    60 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Recall that this is an upp er bo und for[...]

  • Page 69

    2.5. µ SYNTHESIS AND D - K ITERA TION 61 dynamic system. This requires fitting an appro x imati[...]

  • Page 70

    62 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Figure 2. 12: D - K iterat ion pro cedure[...]

  • Page 71

    2.5. µ SYNTHESIS AND D - K ITERA TION 63 frequency we w ould hav e, D =      d 1[...]

  • Page 72

    64 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y Sev eral asp ects of t his pro cedure are[...]

  • Page 73

    2.6. MODEL REDUCTION 65 2.6.1 T runcation and Residualization The simplest fo rm of mo del r ed[...]

  • Page 74

    66 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y The controllabilit y grammian, Y is defi[...]

  • Page 75

    2.6. MODEL REDUCTION 67 W e will now lo ok at a particular choice of transfor mation. F or a min[...]

  • Page 76

    68 CHAPTER 2. OVER VIE W OF THE UNDE RL YING THEO R Y and Glov er [79] independently obtained th[...]

  • Page 77

    2.6. MODEL REDUCTION 69 Consider the problem of finding the stable, order k realization w hich m[...]

  • Page 78

    Chapter 3 F unctional Description of X µ 3.1 In tro duction This chapter describes the X µ func[...]

  • Page 79

    72 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ 3.2.1 D ynamic System s Xmath has a dynamic system[...]

  • Page 80

    3.2. D A T A OBJECTS 73 As above, these p olynomials can be sp ecified b y their ro ots or thei[...]

  • Page 81

    74 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Because the dynamic system is a built-in data ob [...]

  • Page 82

    3.2. D A T A OBJECTS 75 App ending and Merging Data Time functions, for cre ating simulation in[...]

  • Page 83

    76 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Data ca n also b e extracted b y indep endent v [...]

  • Page 84

    3.2. D A T A OBJECTS 77 # index of the pdm the value 100. idxlst = indexlist([4,1,2] ) pdm1(idx[...]

  • Page 85

    78 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ # Select columns 1, 3 ,4&5a n d rows 2 & 7[...]

  • Page 86

    3.2. D A T A OBJECTS 79 and B . Augmentation for pdm s simp ly p erforms the augmen tation at ea[...]

  • Page 87

    80 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ poles, or a zero D term. Generating rando m system[...]

  • Page 88

    3.3. MA TRIX INFORMA TION, DISPLA Y AND PLOTTING 81 # N is the decimation ratio. smallpdm = big[...]

  • Page 89

    82 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ 3.3.2 F ormatted Displa y F unctions It is often u[...]

  • Page 90

    3.3. MA TRIX INFORMA TION, DISPLA Y AND PLOTTING 83 g1 = ctrlplot(sys1g, { bode } ); g1 = ctrl[...]

  • Page 91

    84 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ # Nyquist plots g2 = ctrlplot(sys1g, { nyqui st } )[...]

  • Page 92

    3.4. SYSTEM RESP ONSE FUNCTIONS 85 3.4 System Resp onse F unctions 3.4.1 Creating Time Domain S[...]

  • Page 93

    86 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ spacing in the input signa l pdm . This mea ns th[...]

  • Page 94

    3.4. SYSTEM RESP ONSE FUNCTIONS 87 [a,b,c,d] = abcd(sys) sys = system(a,b,c,d) y1 = system(sys, [...]

  • Page 95

    88 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ and intstep are the in terp olation order an d inte[...]

  • Page 96

    3.4. SYSTEM RESP ONSE FUNCTIONS 89 maximum. This can b e ha ndy when first examining a high ord[...]

  • Page 97

    90 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Frequency 0.1 1 10 0.01 100 Magnitude 1e-05 0.000[...]

  • Page 98

    3.5. SYSTEM INTERCONNECTION 91 Figure 3.2: Generic Red heffer in terconnect ion structure 3.5 [...]

  • Page 99

    92 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Figure 3.3: Example in terconnecti on of subsystem[...]

  • Page 100

    3.5. SYSTEM INTERCONNECTION 93 Using sysic to fo rm this interconnection can be considered a [...]

  • Page 101

    94 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Specify the o utputs in terms of the subsystem name[...]

  • Page 102

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 95 (rad/sec) ratio -1.0000e+00 0.0000e+00 1.0000e+00[...]

  • Page 103

    96 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Figure 3.5: In terconnection structu re for contr[...]

  • Page 104

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 97 equation solutio n pro cedure o ften b ecomes po[...]

  • Page 105

    98 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.1 [...]

  • Page 106

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 99 Figure 3.7: W eight ed design in terconnect ion[...]

  • Page 107

    100 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.0[...]

  • Page 108

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 101 12.500 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 [...]

  • Page 109

    102 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ (rad/sec) ratio -1.4046e-01 -2.3161e-01 2.7087e-0[...]

  • Page 110

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 103 Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0[...]

  • Page 111

    104 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.1[...]

  • Page 112

    3.6. H 2 AND H ∞ ANAL YSIS AND SYNTHESIS 105 g3 = ctrlplot(step,g3, { line style=2 } ); g3 [...]

  • Page 113

    106 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Bounds on the H ∞ norm are ret urned as out . [...]

  • Page 114

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 107 3.7 Structured Singular V al[...]

  • Page 115

    108 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ The outputs of the µ functio n a re: the upper[...]

  • Page 116

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 109 c = 1/sqrt(gamma); d = -sqr[...]

  • Page 117

    110 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ mubnds2? mubnds2 (a column vector) = 3.17155 3.171[...]

  • Page 118

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 111 (a) Cont roller and closed l[...]

  • Page 119

    112 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Figure 3. 9: H ∞ controller design. Step 9 i[...]

  • Page 120

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 113 Both the D and D − 1 syste[...]

  • Page 121

    114 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ creating weigh ts fro m data and simple system id[...]

  • Page 122

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 115 plant = 1/makepoly([1,0,-0.01[...]

  • Page 123

    116 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Wperf = makepoly([0.01,1],"s")/ makepoly[...]

  • Page 124

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 117 nms = ["plant";&quo[...]

  • Page 125

    118 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ blk = [1,1; 2,2] [rpbnds1,D1,Dinv1,Delt a1,sens1] [...]

  • Page 126

    3.7. STRUCTURED SINGULAR V ALUE ( µ ) ANAL YSIS AND SYNTHE SIS 119 Frequency (Hz) 0.1 1 10 0.01[...]

  • Page 127

    120 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ 0.1 1 10 0.01 100 Magnitude 0.5 1 1.5 2 2.5 3 [...]

  • Page 128

    3.8. MODEL REDUCTION 121 pert = randpert(blk, { sys,sfreq, complex,pn orm } ) The user ca n spec[...]

  • Page 129

    122 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ A g reater r ange of mo del reductio n functio ns[...]

  • Page 130

    3.8. MODEL REDUCTION 123 g1 = ctrlplot(sysout2g,g1, { logmagplo t,line style=4 } ); g1 = ctrlp[...]

  • Page 131

    124 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ # Displaying the Hankel singular values shows whic[...]

  • Page 132

    3.8. MODEL REDUCTION 125 3.8.3 Hank el Singular V alue Approximation The function ophank (also [...]

  • Page 133

    126 CHAPTER 3. FUNCTIONAL DESCRIPTION OF X µ Frequency 0.1 1 10 0.01 100 Magnitude 1e-05 0.00[...]

  • Page 134

    Chapter 4 Demonstration Examples 4.1 The Himat Example The following demo can be run by executing [...]

  • Page 135

    128 CHAPTER 4. DEMONSTRA TION EXAMPLES δv Perturbations along the velo city v ector. α Angle [...]

  • Page 136

    4.1. TH E HIMA T EXAMPLE 129 Figure 4.2: In terconnection st ructure for the himat design exam p[...]

  • Page 137

    130 CHAPTER 4. DEMONSTRA TION EXAMPLES himat (a state space system) = A -0.0226 -36.6 -18.9 -32.1[...]

  • Page 138

    4.1. TH E HIMA T EXAMPLE 131 angle-of-attack pitch angle System is continuous 4.1.3 Creating a [...]

  • Page 139

    132 CHAPTER 4. DEMONSTRA TION EXAMPLES Frequency 0.01 0.1 1 10 100 1000 0.001 10000 Magnitude[...]

  • Page 140

    4.1. TH E HIMA T EXAMPLE 133 sysn = ["himat";"wdel";"wp"] in = [&qu[...]

  • Page 141

    134 CHAPTER 4. DEMONSTRA TION EXAMPLES gamma Hx eig X eig Hy eig Y eig nrho xy p/f 6.000 [...]

  • Page 142

    4.1. TH E HIMA T EXAMPLE 135 Zeros: real imaginary frequency damping (rad/sec) ratio -2.2516e-02[...]

  • Page 143

    136 CHAPTER 4. DEMONSTRA TION EXAMPLES Frequency 1 10 100 1000 0.1 10000 Magnitude 0.01 0.1 0.0[...]

  • Page 144

    4.1. TH E HIMA T EXAMPLE 137 -2.2517e-02 0.0000e+00 2.2517e-02 1.0000 -2.2600e-02 0.0000e+00 2.26[...]

  • Page 145

    138 CHAPTER 4. DEMONSTRA TION EXAMPLES 1 10 100 1000 0.1 10000 0.5 1 1.5 0 2 Singular value pl[...]

  • Page 146

    4.1. TH E HIMA T EXAMPLE 139 complex v alued blo cks. The upp er and lower bounds of the µ fun[...]

  • Page 147

    140 CHAPTER 4. DEMONSTRA TION EXAMPLES 1 10 100 1000 0.1 10000 0.6 0.8 1 1.2 1.4 1.6 0.4 1.8 M[...]

  • Page 148

    4.1. TH E HIMA T EXAMPLE 141 The second thing to note is that the in ter connection structure has[...]

  • Page 149

    142 CHAPTER 4. DEMONSTRA TION EXAMPLES Frequency (Hz) 1 10 100 1000 0.1 10000 Magnitude 0.1 1 0[...]

  • Page 150

    4.1. TH E HIMA T EXAMPLE 143 comment D1sys "system approx. to D1" comment D1invsys &qu[...]

  • Page 151

    144 CHAPTER 4. DEMONSTRA TION EXAMPLES g2 = starp(himat ic,k2) comment g2 "closed loop: i[...]

  • Page 152

    4.1. TH E HIMA T EXAMPLE 145 1 10 100 1000 0.1 10000 0.6 0.8 1 1.2 1.4 1.6 0.4 1.8 Robustness[...]

  • Page 153

    146 CHAPTER 4. DEMONSTRA TION EXAMPLES g3 = starp(himat ic,k3) g3g = freq(g3,omega) [bnds3,D3,D3[...]

  • Page 154

    4.1. TH E HIMA T EXAMPLE 147 d = zeros(2,2) klp = system(a,b,c,d) comment klp "loop shape co[...]

  • Page 155

    148 CHAPTER 4. DEMONSTRA TION EXAMPLES comment gsim mu nom "nominal closed loop sys: mu c[...]

  • Page 156

    4.1. TH E HIMA T EXAMPLE 149 time 0.5 1 1.5 0 2 -0.5 0 0.5 1 -1 1.5 Kmu step dist. response (nom[...]

  • Page 157

    150 CHAPTER 4. DEMONSTRA TION EXAMPLES The lo opsha ping design gives a decoupled resp onse. Both[...]

  • Page 158

    4.1. TH E HIMA T EXAMPLE 151 time 0.5 1 1.5 0 2 -0.5 0 0.5 1 -1 1.5 Kmu step dist. response (per[...]

  • Page 159

    152 CHAPTER 4. DEMONSTRA TION EXAMPLES The lo opsha ping controller had goo d nominal perfo rmance[...]

  • Page 160

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 153 4.2 A Simple Flexible Structure Example The dem[...]

  • Page 161

    154 CHAPTER 4. DEMONSTRA TION EXAMPLES Figure 4.3: Sc hematic diagram of t he JPL Phase B opti c[...]

  • Page 162

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 155 static gain. W e will include some dynamic uncer[...]

  • Page 163

    156 CHAPTER 4. DEMONSTRA TION EXAMPLES The additive weigh t clearly provides for significant high[...]

  • Page 164

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 157 F = 100 Wactp = makepoly([1/(2*pi*F),1] ,"s&[...]

  • Page 165

    158 CHAPTER 4. DEMONSTRA TION EXAMPLES Wdist,Wnoise,Wperf,W actp,Wactv ,piezo) size(P)? ans (a row[...]

  • Page 166

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 159 Frequency 10 100 1 1000 Magnitude 0.01 0.1 1 10 [...]

  • Page 167

    160 CHAPTER 4. DEMONSTRA TION EXAMPLES And examine the design weigh ts. weightsg = freq(weights,o[...]

  • Page 168

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 161 Frequency 10 100 1 1000 Magnitude 0.01 0.1 1 10 [...]

  • Page 169

    162 CHAPTER 4. DEMONSTRA TION EXAMPLES 4.2.3 Design of an H ∞ Con troller An H ∞ design i[...]

  • Page 170

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 163 -3.5543e+02 -3.5543e+02 5.0265e+02 0.7071 -3.55[...]

  • Page 171

    164 CHAPTER 4. DEMONSTRA TION EXAMPLES Frequency 10 100 1 1000 Magnitude 0.001 0.01 0.1 0.0001 1 [...]

  • Page 172

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 165 4.2.4 Robustness Analysis The blo ck str ucture[...]

  • Page 173

    166 CHAPTER 4. DEMONSTRA TION EXAMPLES gph4 = ctrlplot(npbnds, { log,lin e style=4 } ); gph4 = ct[...]

  • Page 174

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 167 0.5 1 1.5 0 2 -0.01 -0.005 0 0.005 0.01 -0.015 [...]

  • Page 175

    168 CHAPTER 4. DEMONSTRA TION EXAMPLES 4.2.5 D - K Iteration W e will now perfo rm one D - K ite[...]

  • Page 176

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 169 Kmug = freq(Kmu,omega) gph5 = ctrlplot(Kmug, { bo[...]

  • Page 177

    170 CHAPTER 4. DEMONSTRA TION EXAMPLES Frequency 10 100 1 1000 Magnitude 0.001 0.01 0.1 0.0001 1 [...]

  • Page 178

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 171 W e now examine the robustness p roperties of th[...]

  • Page 179

    172 CHAPTER 4. DEMONSTRA TION EXAMPLES 10 100 1 1000 0.05 0.1 0.15 0.2 0.25 0 0.3 mu analysis of[...]

  • Page 180

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 173 4.2.6 A Sim ulation Study No w the t w o con[...]

  • Page 181

    174 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 -0.004 -0.002 0 0.002 0.004 -0.006 0.006 Si[...]

  • Page 182

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 175 gph8 = ctrlplot(u(2,1)); gph8 = plot(gph8, { titl[...]

  • Page 183

    176 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 micrometers -0.002 -0.001 0 0.001 0.002 -0.[...]

  • Page 184

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 177 A nominal r esp onse is calcula ted by setting ?[...]

  • Page 185

    178 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 micrometers -5 0 5 -10 10 open loop beam le[...]

  • Page 186

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 179 Now w e consider the closed-lo op nominal resp o[...]

  • Page 187

    180 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 micrometers -0.2 -0.1 0 0.1 0.2 0.3 -0.3 0.[...]

  • Page 188

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 181 gph11 = ctrlplot(yclphinf(2,1)) ; gph11 = ctrlplo[...]

  • Page 189

    182 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 -0.01 -0.005 0 0.005 0.01 -0.015 0.015 clos[...]

  • Page 190

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 183 gph12 = ctrlplot(yclphinf(3,1)) ; gph12 = ctrlplo[...]

  • Page 191

    184 CHAPTER 4. DEMONSTRA TION EXAMPLES 0.5 1 1.5 0 2 -0.01 0 0.01 0.02 -0.02 0.03 closed loop: p[...]

  • Page 192

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 185 Note that Kmu achiev es better performance at th[...]

  • Page 193

    186 CHAPTER 4. DEMONSTRA TION EXAMPLES gph13 = ctrlplot(ybclpmu(1,1),g ph13); gph13 = plot(gph13, [...]

  • Page 194

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 187 Frequency 10 100 1 1000 Magnitude 0.001 0.01 0.1[...]

  • Page 195

    188 CHAPTER 4. DEMONSTRA TION EXAMPLES gph14 = ctrlplot(ybclphinf(2,1) ); gph14 = ctrlplot(ybclpmu[...]

  • Page 196

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 189 0.5 1 1.5 0 2 -0.01 -0.005 0 0.005 0.01 -0.015 [...]

  • Page 197

    190 CHAPTER 4. DEMONSTRA TION EXAMPLES gph15 = ctrlplot(ybclphinf(3,1) ); gph15 = ctrlplot(ybclpmu[...]

  • Page 198

    4.2. A SIMPLE FLEX IBLE STR UCTURE EXAMPLE 191 0.5 1 1.5 0 2 -0.02 -0.01 0 0.01 0.02 -0.03 0.0[...]

  • Page 199

    Bibliograph y [1] J. C. Doyle, “Lecture notes on adv ances in multiv ariable control.” ONR/Hone[...]

  • Page 200

    194 BIBLIOGRAPHY [11] G. J. Ba las and J. C. Doyle, “Robust con tr ol of flexible modes in t[...]

  • Page 201

    BIBLIOGRAPHY 195 [24] D. L. Laughlin, K. G. Jordan, and M. Morari, “In ternal mo del con trol [...]

  • Page 202

    196 BIBLIOGRAPHY [37] R. Kosut, M . Lau, and S. Bo yd, “Param eter set ident ification of sys[...]

  • Page 203

    BIBLIOGRAPHY 197 [50] J. M. Krause, P . P . Khargonek ar, and G. Stein , “Robust param eter a[...]

  • Page 204

    198 BIBLIOGRAPHY [63] A. J. La ub, “A Sch ur method for solving algebr aic Riccati equatio ns,[...]

  • Page 205

    BIBLIOGRAPHY 199 [76] M. Dahleh, A . T esi , and A. V icino, “Extremal prop erties for t he par[...]

  • Page 206

    Chapter 6 F unction Reference 6.1 X µ F unctions The following pages contain descriptions of the[...]

  • Page 207

    202 CHAPTER 6. FUNCTION RE FERENCE rifd ....... ........ ......... ........ ....... ........ .....[...]

  • Page 208

    6.1. X µ FUNCTIONS 203 Mo del r e duction and state-sp ac e functions balmoore ...... ........ .[...]

  • Page 209

    204 CHAPTER 6. FUNCTION RE FERENCE Misc el lane ous functions conpdm ...... ........ ......... ...[...]

  • Page 210

    balmoore 205 balmo ore Syn t ax [SysR,HSV,T] = balmoore(Sys, { nsr,bound } ) Pa r a m e t e r Li [...]

  • Page 211

    206 Chapter 6. F unctio n Reference Reference B.C. Mo ore, “Prin cip al Comp onen t Analysis in[...]

  • Page 212

    balmoore 207 See Also: minimal , ophank .[...]

  • Page 213

    blknorm 209 blknorm Syn t ax normM = blknorm(M,blk,p,Frobeni us) Pa r a m e t e r Li s t Inputs: M[...]

  • Page 214

    210 Chapter 6. F unctio n Reference Examples A = random(3,3)-0.5*ones(3 ,3)? A (a square matrix) [...]

  • Page 215

    blknorm 211 2.23607 3 4 7.81025 7 8 13.4536 11 12 # and compare to norm(B(1,1:2)) ans (a scalar[...]

  • Page 216

    conpdm 213 conp dm Syn t ax outpdm = conpdm(mat,domain, { skipChk s } ) Pa r a m e t e r Li s t In[...]

  • Page 217

    consys 215 consys Syn t ax outsys = consys(mat, { skipChks } ) Pa r a m e t e r Li s t Inputs: ma[...]

  • Page 218

    csum 217 csum Syn t ax [outpdm] = csum(inpdm, { channels } ) Pa r a m e t e r Li s t Inputs: inpd[...]

  • Page 219

    218 Chapter 6. F unctio n Reference ans (a rectangular matrix) = 1 0.608453 2 1.46287 3 1.52714 [...]

  • Page 220

    csum 219 ans (a pdm) = domain | Col 1 Col 2 -------+-------------- --------- 1 | Row 1 1 0.608[...]

  • Page 221

    ctrlplot 221 ctrlplot Syn t ax graph = ctrlplot(pdm,old graph, { keywords } ) Pa r a m e t e r Li[...]

  • Page 222

    222 Chapter 6. F unctio n Reference linear linear domain. Default = 1 for timeresp k eyword. D[...]

  • Page 223

    ctrlplot 223 Description This function per forms some co mmon control system related plotting. Th[...]

  • Page 224

    224 Chapter 6. F unctio n Reference legend = ["sys1","sys2"] } )?[...]

  • Page 225

    ctrlplot 225 Frequency 0.1 1 0.01 10 Magnitude 0.0001 0.001 0.01 0.1 1 1e-05 10 Bode plots sys1 sy[...]

  • Page 226

    226 Chapter 6. F unctio n Reference # Nyquist plots g2 = ctrlplot(sys1g, { nyqui st } ); g2 = ctr[...]

  • Page 227

    ctrlplot 227 Real -1 0 1 -2 2 Imaginary -1.5 -1 -0.5 0 -2 0.5 Nyquist plots sys1 sys3 critical p[...]

  • Page 228

    228 Chapter 6. F unctio n Reference # Create a second order lightly damped system to illustrate [...]

  • Page 229

    ctrlplot 229 2468 0 10 -2 -1 0 1 -3 2 input x0 = zero non-zero x0[...]

  • Page 230

    230 Chapter 6. F unctio n Reference See Also: plot .[...]

  • Page 231

    daug 231 daug Syn t ax out = daug (sys1,sys2,...) Pa r a m e t e r Li s t Inputs: sys1 Input sy[...]

  • Page 232

    232 Chapter 6. F unctio n Reference ans (a square matrix) = 110 0 002 0 002 0 000I n f sys1 = ran[...]

  • Page 233

    daug 233 -1.67106 B 0.579502 C 0.262815 0.436099 D 0.911055 0.808267 X0 1 State Names ----------- s[...]

  • Page 234

    234 Chapter 6. F unctio n Reference D 0.492058 0.748961 0 0 001 0 0 0 0 0 0.911055 0 0 0 0.8[...]

  • Page 235

    daug 235 0| 1 0 -------+----- 1| 1 0 -------+----- 2| 1 0 -------+----- daug(pdm1,pdm2) ans (a pdm)[...]

  • Page 236

    delsubstr 237 delsubstr Syn t ax [outstr] = delsubstr(str,charstr) Pa r a m e t e r Li s t Inputs:[...]

  • Page 237

    238 Chapter 6. F unctio n Reference out2 (a column vector of strings) = string one aaa xy # If ex[...]

  • Page 238

    fitsys 239 fitsys Syn t ax [sys] = fitsys(data,npoles ,nzeros,we ight, { skipchks,Hertz } ) Pa [...]

  • Page 239

    240 Chapter 6. F unctio n Reference The primary use of this routine is the fitting of D scal e w[...]

  • Page 240

    fitsys 241 real imaginary frequency damping (rad/sec) ratio -1.0000e+00 0.0000e+00 1.0000e+00 1.00[...]

  • Page 241

    242 Chapter 6. F unctio n Reference Frequency 0.01 0.1 1 10 0.001 100 Phase (degrees) -300 -200[...]

  • Page 242

    fitsys 243 # Create fitting weight. 1/s works well for logspaced # data. wght = 1/makepoly([1,0][...]

  • Page 243

    244 Chapter 6. F unctio n Reference Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.1 1 10 0.01 1[...]

  • Page 244

    fitsys 245 Limita tions Limited to SISO systems . See Also tfid[...]

  • Page 245

    gstep 247 gstep Syn t ax gPdm = gstep (ytime,timespec,valspec , { skipChks } ) Pa r a m e t e r Li[...]

  • Page 246

    248 Chapter 6. F unctio n Reference Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.1 1 10 0.01 1[...]

  • Page 247

    gstep 249 See Also randpdm , gcos , gsin , gpulse , gsawtooth , gsquarewave[...]

  • Page 248

    hinfnorm 251 hinfnorm Syn t ax [out,omega] = hinfnorm(sys,tol, { imag eps,max it } ) Pa r a m e [...]

  • Page 249

    252 Chapter 6. F unctio n Reference Stable Dynamic System norms a re calculated by an itera tive [...]

  • Page 250

    hinfnorm 253 25.000 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p 12.500 5.2e-01 1.7e-03 1.0e-02 0.0e[...]

  • Page 251

    h2norm 255 h2norm Syn t ax out = h2norm(sys) Pa r a m e t e r Li s t Inputs: sys Co n tin uous ti[...]

  • Page 252

    256 Chapter 6. F unctio n Reference Wperf = 100/makepoly([100,1],"s ") Wact = makepoly([[...]

  • Page 253

    hinfsyn 257 hinfsyn Syn t ax [k,gfin,stat] = hinfsyn(p,nmeas,ncon,gamma, { keywords } ) Pa r a[...]

  • Page 254

    258 Chapter 6. F unctio n Reference Description The H ∞ (sub)optimal controller for the inter[...]

  • Page 255

    hinfsyn 259 1. ( a, b 2 ,c 2 ) is stabiliza ble and detectable 2. d 12 and d 21 ha ve full rank[...]

  • Page 256

    260 Chapter 6. F unctio n Reference wghtic = sysic(sysnames,sy sinp,sysou t,syscnx,p lant,... Wpe[...]

  • Page 257

    hinfsyn 261 real imaginary frequency damping (rad/sec) ratio -5.0000e-02 -3.1225e-01 3.1623e-01 [...]

  • Page 258

    262 Chapter 6. F unctio n Reference Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.01 0.1 1 0.00[...]

  • Page 259

    hinfsyn 263 # Use sysic to create unweighted interconnection ic = sysic("plant",["[...]

  • Page 260

    264 Chapter 6. F unctio n Reference gph2 = ctrlplot(sensg, { logmagpl ot } ); gph2 = plot(gph2, {[...]

  • Page 261

    hinfsyn 265 Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.1 1 0.01 10 Kinf controller: sensitivi[...]

  • Page 262

    266 Chapter 6. F unctio n Reference # Examine step response step = gstep([0:0.1:10],0,1) y = clpi[...]

  • Page 263

    hinfsyn 267 2468 0 10 0.2 0.4 0.6 0.8 1 0 1.2 Kinf controller: step response[...]

  • Page 264

    268 Chapter 6. F unctio n Reference See also hinfsyn , hinfnorm , h2norm[...]

  • Page 265

    h2syn 269 h2syn Syn t ax k = h2syn(p,nmeas,ncon, { ke ywords } ) Pa r a m e t e r Li s t Inputs: [...]

  • Page 266

    270 Chapter 6. F unctio n Reference p k - zw y u The v ariab les ncon and nmeas are used to sp[...]

  • Page 267

    h2syn 271 Reference This function uses the state-spa ce formulae given in: “Stat e-sp ace form[...]

  • Page 268

    272 Chapter 6. F unctio n Reference K2 = h2syn(wghtic,nmeas,nc trls) rifd(K2) Poles: real imagina[...]

  • Page 269

    h2syn 273 Frequency 0.01 0.1 1 10 0.001 100 Magnitude 0.001 0.01 0.1 0.0001 1 K2 Frequency 0.01 [...]

  • Page 270

    274 Chapter 6. F unctio n Reference # Use sysic to create unweighted interconnection ic = sysic([...]

  • Page 271

    h2syn 275 sensg = freq(sens,omega) gph2 = ctrlplot(sensg, { logmagpl ot } ); gph2 = plot(gph2, { t[...]

  • Page 272

    276 Chapter 6. F unctio n Reference Frequency 0.01 0.1 1 10 0.001 100 Magnitude 1 0.1 10 K2 con[...]

  • Page 273

    h2syn 277 # Examine step response step = gstep([0:0.1:10],0,1) y = clp2*step gph3 = ctrlplot([y,st[...]

  • Page 274

    278 Chapter 6. F unctio n Reference 2468 0 10 0.2 0.4 0.6 0.8 0 1 K2 controller: step response[...]

  • Page 275

    h2syn 279 See also hinfsyn , h2norm , hinfnorm[...]

  • Page 276

    interp 281 in terp Syn t ax outpdm = interp(inpdm,stepsize,final { keywords } ) outpdm = interp[...]

  • Page 277

    282 Chapter 6. F unctio n Reference This function differs from the interpolate function in tha [...]

  • Page 278

    interp 283 1234 0 5 1 2 3 4 0 5 1st order interp. 0 order interp. original pdm[...]

  • Page 279

    284 Chapter 6. F unctio n Reference See Also interpolate[...]

  • Page 280

    mergeseg 285 mergeseg Syn t ax outpdm = mergeseg(pdm1,pdm2, { keywords } ) Pa r a m e t e r Li s [...]

  • Page 281

    286 Chapter 6. F unctio n Reference Exam ple time1 = [0:0.025:1] pdm1 = gsin(time1, { frequency= [...]

  • Page 282

    mergeseg 287 0.5 1 0 1.5 -0.5 0 0.5 -1 1 outpdm pdm1 pdm2[...]

  • Page 283

    mkpert 289 mkp ert Syn t ax [pertsys] = mkpert(Delta,blk,mubnds, { f select,pn orm,Hertz } ) Pa[...]

  • Page 284

    290 Chapter 6. F unctio n Reference The bo unds, m ubnds, ar e used to determine the ”worst-cas[...]

  • Page 285

    mkphase 291 mkphase Syn t ax [cdata] = mkphase(magdata, { skipchks,Hertz } ) Pa r a m e t e r Li [...]

  • Page 286

    292 Chapter 6. F unctio n Reference Limita tions Limited to SISO systems . See Also fitsys , cceps[...]

  • Page 287

    modalstate 293 mo dalstate Syn t ax outsys = modalstate(sys, { keywords } ) Pa r a m e t e r Li s[...]

  • Page 288

    294 Chapter 6. F unctio n Reference -8.1602e-01 1.3353e+00 1.5649e+00 0.5215 -8.1602e-01 -1.3353e+[...]

  • Page 289

    mu 295 mu Syn t ax [mubnds,D,Dinv,Delta, sens] = mu(M,blk) Pa r a m e t e r Li s t Inputs: M Mat[...]

  • Page 290

    296 Chapter 6. F unctio n Reference # that mu is not equal to its upper bound for # more than thr[...]

  • Page 291

    mu 297 ans (a scalar) = 2.81264 mubnds2? mubnds2 (a column vector) = 2.81264 2.81264 det(eye(4,4)[...]

  • Page 292

    musynfit 299 m usynfit Syn t ax [Dsys,Dinvsys] = musynfit(Dmag,blk,nmeas,nc trls,.. weight,M,orde[...]

  • Page 293

    300 Chapter 6. F unctio n Reference Keyw ords: He rtz Boolean. This ke yword i s mandatory as t[...]

  • Page 294

    musynfit 301 P = 1/makepoly([1,0,-0.01] ,"s") W = makepoly([1,20],"s")/m akepol[...]

  • Page 295

    302 Chapter 6. F unctio n Reference 1.562 6.8e-01 8.0e-04 7.7e-03 0.0e+00 0.6811 p 1.406 6.7e-0[...]

  • Page 296

    musynfit 303 0.1 1 10 0.01 100 0.2 0.4 0.6 0.8 1 0 1.2 mu analysis nominal perf. robust stab. ro[...]

  • Page 297

    304 Chapter 6. F unctio n Reference # Fit transfer functions to D1 & Dinv1 for a mu # sy[...]

  • Page 298

    musynfit 305 Frequency (Hz) 0.1 1 10 0.01 100 Magnitude 10 100 1000 1 10000 D scale fit, block: 1[...]

  • Page 299

    306 Chapter 6. F unctio n Reference # Apply the D scales to another H infinity design Kmu = hinf[...]

  • Page 300

    musynfit 307 0.1 1 10 0.01 100 0.2 0.4 0.6 0.8 1 0 1.2 Kmu & Kinf mu analysis Kmu: robust pe[...]

  • Page 301

    308 Chapter 6. F unctio n Reference # Look at the worst case perturbations for each of # the Kinf [...]

  • Page 302

    musynfit 309 ymunom(1,1),ymupert(1 ,1)]); gph4 = plot(gph4, { legend=["inpu t step";"[...]

  • Page 303

    310 Chapter 6. F unctio n Reference 123 0 4 0.2 0.4 0.6 0.8 1 1.2 0 1.4 input step Kinf nominal K[...]

  • Page 304

    musynfit 311 # Compare with a random perturbation yinfrandp = infrpert*step ymurandp = murpert*st[...]

  • Page 305

    312 Chapter 6. F unctio n Reference 123 0 4 0.2 0.4 0.6 0.8 1 1.2 0 1.4 input step Kinf nominal K[...]

  • Page 306

    musynfit 313 See Also: mu , hinfsyn , mkpert , hinfnorm .[...]

  • Page 307

    ophank 315 ophank Syn t ax [SysR,SysU,HSV] = ophank(Sys, { nsr,o nepass } ) Pa r a m e t e r Li s[...]

  • Page 308

    316 Chapter 6. F unctio n Reference Uses additional s ubroutines ophiter , ophred , ophmult and s[...]

  • Page 309

    ophank 317 Frequency 0.1 1 10 0.01 100 Magnitude 0.001 0.01 0.0001 0.1 original system reduced: o[...]

  • Page 310

    318 Chapter 6. F unctio n Reference See Also minimal , balmoore .[...]

  • Page 311

    orderstate 319 orderstate Syn t ax outsys = orderstate(sys,indx) Pa r a m e t e r Li s t Inputs: s[...]

  • Page 312

    320 Chapter 6. F unctio n Reference 0.710595 0.688873 C 0.659532 0.181512 0.390497 D 0.15869 X0 0.[...]

  • Page 313

    orderstate 321 0.2 0.1 0.3 State Names ----------- s2 s1 s3 Input Names ----------- Input 1 Output [...]

  • Page 314

    randpdm 323 randp dm Syn t ax pdmout = randpdm (ndomain,nrows,ncolumns, { keywords } ) Pa r a m e [...]

  • Page 315

    324 Chapter 6. F unctio n Reference Examples pdm0 = randpdm(3,1,2, { zeromean } )? pdm0 (a pdm)[...]

  • Page 316

    randpdm 325 10.0323 | 0.922528 ---------+------------ 18.3191 | 0.81113 ---------+------------ pd[...]

  • Page 317

    randpert 327 randp ert Syn t ax [pert] = randpert(blk, { sys,sfreq,complex,pnorm } ) Pa r a m e [...]

  • Page 318

    328 Chapter 6. F unctio n Reference Exam ple The use of randpert is studied in co ntext in the o[...]

  • Page 319

    randsys 329 randsys Syn t ax sys = randsys (nstates,noutputs,ninput s, { keywor ds } ) Pa r a m e[...]

  • Page 320

    330 Chapter 6. F unctio n Reference Description A rando m system, with user sp ecified state, in[...]

  • Page 321

    randsys 331 real imaginary frequency damping (rad/sec) ratio -1.0408e+00 0.0000e+00 1.0408e+00 1.0[...]

  • Page 322

    332 Chapter 6. F unctio n Reference Frequency 0.1 1 10 0.01 100 Magnitude 0.01 0.1 1 0.001 10 sy[...]

  • Page 323

    randsys 333 sys3 = randsys(6,1,1, { discrete, dt=5 } ) rifd(sys3)? Poles: radius angle (radians) 0[...]

  • Page 324

    rifd 335 rifd Syn t ax [stat] = rifd(vec, { discrete,Hertz,d egrees } ) Pa r a m e t e r Li s t In[...]

  • Page 325

    336 Chapter 6. F unctio n Reference Examples sys1 = randsys(4,3,2, { stable } ) rifd(sys1) Poles:[...]

  • Page 326

    rifd 337 sys2 = randsys(3,3,2, { stable,di screte } ) rifd(sys2) Poles: radius angle (radians) 0.9[...]

  • Page 327

    sdtrsp 339 sdtrsp Syn t ax [v,y,u] = sdtrsp(Sys,dSys,w,tfinal,. .. { ord,intstep,cdelay } ) Pa r[...]

  • Page 328

    340 Chapter 6. F unctio n Reference Description Time doma in simulation of a sa mpled data interco[...]

  • Page 329

    sdtrsp 341 triangle ho ld equiv alent is used. This is the same a linea rly connecting the sam[...]

  • Page 330

    342 Chapter 6. F unctio n Reference inps = "ref" outs = "digP" cnx = ["di[...]

  • Page 331

    sdtrsp 343 0.2 0.4 0.6 0.8 0 1 -1 0 1 2 3 -2 4 sampled data calc. discrete calc.[...]

  • Page 332

    344 Chapter 6. F unctio n Reference See Also trsp[...]

  • Page 333

    simtransform 345 sim transform Syn t ax out = simtransform(sys,X) Pa r a m e t e r Li s t Inputs: [...]

  • Page 334

    346 Chapter 6. F unctio n Reference -1.9737e+01 0.0000e+00 1.9737e+01 1.0000 -9.7569e+00 -2.9129e+[...]

  • Page 335

    simtransform 347 X0 0 0 0 Input Names ----------- Input 1 Output Names ------------ Output 1 System[...]

  • Page 336

    spectrad 349 sp ectrad Syn t ax out = spectrad(mat) Pa r a m e t e r Li s t Inputs: ma t Square m[...]

  • Page 337

    350 Chapter 6. F unctio n Reference eig(pdm1)? ans (a pdm) = domain | -------+-------------- -----[...]

  • Page 338

    sresidualize 351 sresidualize Syn t ax sysout = sresidualize(sysin,ord) Pa r a m e t e r Li s t Inp[...]

  • Page 339

    352 Chapter 6. F unctio n Reference sysout1 = sresidualize(sys1,3) sysout2 = truncate(sys1,3) fHz [...]

  • Page 340

    sresidualize 353 Frequency 0.1 1 10 0.01 100 Magnitude 0.0001 0.001 0.01 1e-05 0.1 original syste[...]

  • Page 341

    354 Chapter 6. F unctio n Reference See also rifd , simtransform , orderstate modalstate , truncat[...]

  • Page 342

    starp 355 starp Syn t ax out = starp (upper,lower,dim1,dim 2,skipChks ) Pa r a m e t e r Li s t In[...]

  • Page 343

    356 Chapter 6. F unctio n Reference specified. This is equiv alent to: dim1 = min ( upper output[...]

  • Page 344

    starp 357 # structure for closing control loops. The following is # the structure for a simple [...]

  • Page 345

    358 Chapter 6. F unctio n Reference -1.0000e+01 0.0000e+00 1.0000e+01 1.0000 # Now consider the s[...]

  • Page 346

    starp 359 Poles: real imaginary frequency damping (rad/sec) ratio -5.0000e+00 -8.0623e+00 9.4868e[...]

  • Page 347

    substr 361 substr Syn t ax littlestring = substr(bigstring,charinde x, { skipChk s } ) Pa r a m e[...]

  • Page 348

    sysic 363 sysic Syn t ax [sys] = sysic(sysNames,sysInput s,sysOutp uts,sysCon nects,... subsys1,sub[...]

  • Page 349

    364 Chapter 6. F unctio n Reference Matrices can a lso be included in the interconnection and ar[...]

  • Page 350

    trsp 365 trsp Syn t ax [y,uint] = trsp(Sys,u,tfinal, ord,intstep) Pa r a m e t e r Li s t Inputs: [...]

  • Page 351

    366 Chapter 6. F unctio n Reference necessary . If int step is not specified the in tegration s[...]

  • Page 352

    trsp 367 0.5 1 1.5 0 2 -1 -0.5 0 0.5 1 -1.5 1.5 output input[...]

  • Page 353

    368 Chapter 6. F unctio n Reference # Compare trsp calculation to standard [ytrsp,uint] = trsp([...]

  • Page 354

    trsp 369 0.5 1 1.5 0 2 -1 -0.5 0 0.5 1 -1.5 1.5 Time response calculation comparisons trsp calc. [...]

  • Page 355

    370 Chapter 6. F unctio n Reference # Now look at 1st order interpolation [y1trsp,u1int] = trsp([...]

  • Page 356

    trsp 371 0.5 1 1.5 0 2 -1 -0.5 0 0.5 1 -1.5 1.5 Time response calculation comparisons 1st order i[...]

  • Page 357

    sresidualize 373 truncate Syn t ax sysout = truncate(sysin,ord) Pa r a m e t e r Li s t Inputs: sy[...]

  • Page 358

    374 Chapter 6. F unctio n Reference Exam ple This example is iden tica l to tha t describ ed for [...]

  • Page 359

    sresidualize 375 Frequency 0.1 1 10 0.01 100 Magnitude 0.0001 0.001 0.01 1e-05 0.1 original syste[...]

  • Page 360

    376 Chapter 6. F unctio n Reference See also rifd , simtransform , sresidualize , orderstate modal[...]

  • Page 361

    6.2. X µ SUBR OUTINES AND UTILITIES 377 6.2 X µ Subroutines and Utilities Several subroutines [...]

  • Page 362

    blkbal 379 blkbal Syn t ax d = blkbal(M) Description Balances a square ma trix assuming only scala[...]

  • Page 363

    hinfcalc 381 hinfcalc Syn t ax [X,Y,f,h,Ric fail,HX,HY,HXmin,HYmin ] = ... hinfcalc(p,nmeas,nco n[...]

  • Page 364

    382 Chapter 6. F unctio n Reference Pa r a m e t e r Li s t Inputs: p Generalized interconnectio[...]

  • Page 365

    hinfcalc 383 Description F orm and solve th e Riccati equations for the H ∞ con trol problem. [...]

  • Page 366

    powermu 385 po w e r m u Syn t ax [lbnd,delta,errstat] = powermu(M,blk,rp,cp) Description Low er b[...]

  • Page 367

    riccati eig 387 riccati eig Syn t ax [x1,x2,stat,Heig min] = riccati eig(H,epp) Pa r a m e t e [...]

  • Page 368

    388 Chapter 6. F unctio n Reference v ariab le, X = x 2 x − 1 1 , is the stabilizing solution[...]

  • Page 369

    riccati schur 389 riccati sc h ur Syn t ax [x1,x2,stat,Heig min] = riccati schur(H,epp) Pa r a [...]

  • Page 370

    390 Chapter 6. F unctio n Reference v ariab le, X = x 2 x − 1 1 , is the stabilizing solution[...]

  • Page 371

    App endices A T ranslation Bet ween Ma tlab µ -T o ols and X µ This app endix outlines the func[...]

  • Page 372

    392 APPEND ICES The functionally equiv alen t commands will b e listed, in each sub-section, fo[...]

  • Page 373

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 393 Description µ -T o ols F unction Xmath[...]

  • Page 374

    394 APPEND ICES Subblo cks: s electing input & outputs In µ -T o ols the function sel sele[...]

  • Page 375

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 395 Note that the transpose and conjugate t[...]

  • Page 376

    396 APPEND ICES Description µ -T o ols F unction Xmath/X µ equiv alen t peak norm pkvnorm nor[...]

  • Page 377

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 397 Miscellaneou s Utilities Several utiliti[...]

  • Page 378

    398 APPEND ICES A.3 System R esp onse F unctions Creating Ti me Domain Signal s The Xmath pdm dat[...]

  • Page 379

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 399 information. A.4 System In terconnectio[...]

  • Page 380

    400 APPEND ICES Description µ -T o ols function Xma th/X µ equiv alen t H 2 norm calcula tion [...]

  • Page 381

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 401 Description µ -T o ols function Xma th[...]

  • Page 382

    402 APPEND ICES g1g = freq(g1,omega) [mubnds,Dmagdata] = mu(g1g,blk) F rom this, frequency do mai[...]

  • Page 383

    A. TRANSLA TION BETWE EN MA TLA B µ -TOOLS AND X µ 403 The adv an tage of this is that in order[...]

  • Page 384

    T echnical Support and Professional Ser vices Visit the following sections of the National Instrumen[...]