Mitsubishi Electronics MR-J2S- A manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Mitsubishi Electronics MR-J2S- A, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Mitsubishi Electronics MR-J2S- A one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Mitsubishi Electronics MR-J2S- A. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Mitsubishi Electronics MR-J2S- A should contain:
- informations concerning technical data of Mitsubishi Electronics MR-J2S- A
- name of the manufacturer and a year of construction of the Mitsubishi Electronics MR-J2S- A item
- rules of operation, control and maintenance of the Mitsubishi Electronics MR-J2S- A item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Mitsubishi Electronics MR-J2S- A alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Mitsubishi Electronics MR-J2S- A, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Mitsubishi Electronics service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Mitsubishi Electronics MR-J2S- A.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Mitsubishi Electronics MR-J2S- A item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    General-Purpose A C Serv o J2-Super Series General-Purpose Interface MR-J2S- A Serv o Amplifier Instruction Manual B[...]

  • Page 2

    A - 1 Safety Instructions (Alwa ys read t hese instruct ions b efore us ing t he equipm ent.) Do not attem pt to install, ope rate, m aintain or ins pect the serv o amplif ier and ser vo motor unt il you hav e re ad throug h this I nstruct ion M anual, Ins tallat ion gu ide, Ser vo motor Instr uction Manual a nd a ppende d doc uments caref ul l y a[...]

  • Page 3

    A - 2 1. To prevent electric shock, note the follow ing: WARNING Befor e wirin g or insp ection, s witc h power off and wait f or more th an 10 m inutes. Then, c onfirm the vol tage is saf e with v oltage t ester. Otherwis e, y ou ma y get an e lectric shock . Conn e ct th e se rvo a mpl i fie r and se rvo moto r to gr ound . Any pers on who is in [...]

  • Page 4

    A - 3 4. Additional instruct ions The fol lowing ins tructions sho uld als o be ful ly noted . Incor rect h andling ma y ca use a fa ult, inj ury, el ectric shock , etc. (1) Transportation and installation CAUTION Trans port the pro ducts correc tly accor ding to their weights . Stack ing in ex cess of the s pecif ied num ber of products is no t al[...]

  • Page 5

    A - 4 CAUTION Secur ely att ach the ser vo m otor to th e mac hine. If at tach ins ecure ly, the ser vo m otor ma y come of f during operat ion. The s ervo motor with reductio n gear m ust b e insta lled in t he sp ecified direct ion to pr event oil leak age. For saf ety of person nel, al ways co ver rotat ing an d moving parts . Never hit the s er[...]

  • Page 6

    A - 5 (4) Usa ge CAUTION Prov ide an extern al emergenc y stop c ircuit to ensure th at oper ation ca n be sto pped and power sw itched off imm ediately. Any per son who is involv ed in dis assem bly a nd repa ir shou ld be f ully c ompete nt to do t he wor k. Befor e resettin g an alarm , mak e sure that the r un signa l is of f to pr event an acc[...]

  • Page 7

    A - 6 (6) Maintenance, inspection and parts replacement CAUTION W i th age, the el ectroly tic capacito r will d eterio rate. To prevent a secondary accident du e to a faul t, it is recom mended to r eplac e the e lectrol y tic capac itor e very 10 years when used in ge neral e nvironm ent. Pleas e consu lt our s ales represe ntati ve. (7) Disposal[...]

  • Page 8

    A - 7 COMPLIANCE WITH EC DIRECTIVES 1. WHAT AR E EC DI RE C TIVES ? The EC directives were issued to standardize the regulations of t he EU countries and ensure smooth distribution of safet y-guaranteed products. In the EU countries, the machinery directive (effective in Jan uary, 199 5), EMC dir ective (ef fecti ve in Ja nuary, 1996) and low v olt[...]

  • Page 9

    A - 8 (4) Power supply (a) Operate the servo amplifier t o meet th e requirements of the overvoltage category II set forth in IEC664. For this purpose, a reinforced insulating transformer conforming to the IEC or EN Standa rd shou ld be u sed in t he pow er input section . (b) When s upplying interface power from external, use a 24VDC power supply [...]

  • Page 10

    A - 9 (7) Auxi liary equ ipment and op tions (a) T he no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant products of the models described in Section 13.2.2. (b) The size s of the cable s describe d in Section 13.2.1 mee t the fo llowing re quireme nts. To meet t he other requ iremen ts, follo w Table 5 and Appe n[...]

  • Page 11

    A - 10 CONFORMANCE WITH UL/C-UL STANDARD (1) Ser vo am plifier s and s ervo m otors us ed Use the servo amp lifiers and serv o motor s which comp ly with the s tandard mo del. Servo amp lifier series :MR-J2S-10 A(1) to MR- J2S-350A(1) Servo motor series :HC-KFS HC-MFS HC-SFS HC-RFS HC-UFS (2) Installation Install a fan of 100CFM air flow 10.16 cm ([...]

  • Page 12

    1 CONTENTS 1. FUNCT IONS AND CO NFIGURATION 1- 1 to 1- 12 1.1 Intro duction............................................................................................................... ............................... 1- 1 1.2 Fu nction block diagram ..................................................................................................[...]

  • Page 13

    2 3.9 Servo motor w ith elec tromagnetic brake ..................................................................................... ........ 3-52 3.10 Ground ing ................................................................................................................. ............................ 3-55 3.11 Se rvo amplif ier terminal b lock [...]

  • Page 14

    3 7.1.2 Adj ustmen t using servo configur ation so ftware ............................................................................ 7- 2 7.2 Au to tuning ................................................................................................................ .............................. 7- 3 7.2.1 Au to tuning mo de ...................[...]

  • Page 15

    4 12.3 Dyn amic bra ke characteri stics ............................................................................................. .............. 12- 4 12.4 Enco der cable flexing life ................................................................................................ .................... 12- 6 13. OPT IONS AND AUX ILIAR Y EQUIP MEN[...]

  • Page 16

    5 14.12.8 Output signal pin O N/OFF (DO force d output) ...................................................................... 14- 24 14.12.9 Alarm hi story .......................................................................................................... ................... 14-2 5 14.12.1 0 Current alarm ...................................[...]

  • Page 17

    6 Optional Servo Motor Inst ruction Manual CONTE NTS The rough table of conten ts of the optional ME L SERVO Servo Motor In struction Manua l is introd uced here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in the Servo Ampl ifier Ins truction M anual. 1. INTRODUCT ION 2. IN STALLAT ION 3. CONNEC[...]

  • Page 18

    1 - 1 1. FUNCTIONS AND CONFIGURATI ON 1. FUNCTIONS A ND CONFIGURAT ION 1.1 Introduc tion The Mitsubish i MELSERVO-J2-Supe r series general-pu rpose AC servo is based on the ME LSERVO-J2 series and has further higher performance and higher fun ctions. It has position control, speed control and torque control modes. Further, it can perform operation [...]

  • Page 19

    1 - 2 1. FUNCTIONS A ND CONFIGURAT ION 1.2 Func tion block diagram The function block diagram of this servo is shown below. Regenerative brake Ba se amplif ier Volt age detection Overcurrent protectio n En coder Dynamic brake Current detector CHARGE lamp RA DS Control power supply (MR-J2S-200A or more) Fan Electro- mag netic brake Servo motor D C P[...]

  • Page 20

    1 - 3 1. FUNCTIONS A ND CONFIGURAT ION 1.3 Serv o amplif ier standard s pecif ications Servo Ampli fier MR-J2S - Item 10A 20A 40A 60A 70A 100A 200A 350A 10A1 20A1 40A1 Volta ge/frequ ency 3-phase 200 to 230VAC, 50/60Hz or 1-phase 230VAC, 50/60Hz 3-phase 200 to 230VAC, 50/ 60Hz 1-phase 100 to 120VAC 50/60Hz Permissible vo ltage fluctuation 3-phase 2[...]

  • Page 21

    1 - 4 1. FUNCTIONS A ND CONFIGURAT ION 1.4 Func tion list The foll owing table l ists the functions of t his servo. For details of the functions, refer to the corresponding chapter s and sec tions. Function Description (Not e) Control m ode Refer to Position control mode This se rvo is us ed as p osition co ntrol se rvo. P Section 3.1.1 Section 3.4[...]

  • Page 22

    1 - 5 1. FUNCTIONS A ND CONFIGURAT ION Function Description (Not e) Control m ode Refer to Alarm h i st ory cl ea r Al a rm hi s t ory is clea red. P, S, T Para m eter No . 16 Restart after instantaneous power failure If the inpu t power supply vol tage had reduced to cause an alarm b ut has r eturned t o normal , the se rvo mot or can b e restarte[...]

  • Page 23

    1 - 6 1. FUNCTIONS A ND CONFIGURAT ION (2) Model MR–J2S–100A or less MR –J2S –200A 350A General-purpose interface Rated output [W] 100 10 Symbol Rated output 200 20 400 40 600 60 700 70 1000 100 2000 200 35 00 350 Rated output [W] Symbol Rating plate Rating plate MR–J2S– Series A Note:1. Not supplied to the servo ampli fier of MR-J2S-60[...]

  • Page 24

    1 - 7 1. FUNCTIONS A ND CONFIGURAT ION 1.7 Parts ident if ic ati on (1) MR-J2S-100A or less Used to set data. Used to change the disp lay or data in eac h mode. Used to change the mode. Refer to Section15.3 Chapter6 Name/Ap plication Bat te ry h o lde r Contains the battery for absolute position data backup. Battery connector (CON1) Used to connect[...]

  • Page 25

    1 - 8 1. FUNCTIONS A ND CONFIGURAT ION (2) MR-J2S-200A or more POINT The servo am plifier is s hown without the front cover. For removal of t he front cover, refer to next page. Used to set data. Used to change t he display or dat a in each mod e. Used to change t he mod e. Refer to Section15.3 Chapter6 Name/Applicat ion Bat tery holde r Contains t[...]

  • Page 26

    1 - 9 1. FUNCTIONS A ND CONFIGURAT ION Removal of the front c over Reinstal l ation of the front cover Fro nt co ve r 2) 1) Front cover hook (2 places) Fro nt co ve r so cke t (2 places) 2) 1) 1) Hold down the removing knob. 2) Pull the front cover toward you. 1) Insert th e front co ver hooks int o the front cover sockets of the servo amplifier. 2[...]

  • Page 27

    1 - 10 1. FUNCTIONS A ND CONFIGURAT ION 1.8 Servo system with auxiliar y equipm ent W ARNING To preve nt an e lectric s hock , always c onnect t he pr otective earth (PE) ter minal (term inal m a rk ed ) of the ser vo amplifi er to the prot ecti ve earth (P E) of the co ntrol box. (1) MR-J2S-100A or less (a) F o r 3- phas e 20 0V t o 23 0VA C or 1 [...]

  • Page 28

    1 - 11 1. FUNCTIONS A ND CONFIGURAT ION (b) F or 1-p has e 10 0V t o 12 0VA C 1-phase 100V to 120VAC power supply No-fuse breaker (NFB) or fuse Mag netic contacto r (MC) To CN2 To CN3 To CN1B Junction terminal block To CN1A L 1 L 2 L 21 L 11 Protective earth(PE) terminal Servo mo t o r Personal computer UV W Servo configuration software MRZJW3- SET[...]

  • Page 29

    1 - 12 1. FUNCTIONS A ND CONFIGURAT ION (2) MR-J2S-200A or more 3-phase 200V to 230VAC power supply No-fuse breaker (NFB) or fuse Magnetic contactor (MC) To CN 2 To CN 3 To CN1B Junction ter minal block To CN1A L 1 L 2 L 3 L 21 L 11 Servo amplifier Regenerative brake option PC UV W Options and auxi liary equipment No-fuse brea ker Magnetic c ontact[...]

  • Page 30

    2 - 1 2. INSTALLATION 2. INSTALLA TION CAUTION Stack ing in ex cess of the l imited n umber of prod ucts is no t allo wed. Instal l the e quipm ent to inc ombus tibles. Ins tallin g them direct ly or clos e to com bustibles will led to a fire. Instal l the equi pment in a load- bear ing place in accorda nce with this Instruc tion Manual . Do not ge[...]

  • Page 31

    2 - 2 2. INSTALLATION 2.2 Instal lation dir ection and clearances CAUTION The equ ipment m ust be insta lled in the s pecif ied direc tion. Ot herwise, a fault m ay occur. Leave s pecifie d clearanc es bet ween th e servo amplif ier and contro l box inside walls or other equi pment. (1) I nstallat ion of one ser vo amp lifier Control box Co ntrol b[...]

  • Page 32

    2 - 3 2. INSTALLATION (2) I nstallat ion of two or m ore ser vo am plifiers Leave a large clearance b etween the top of the s ervo amplifier and the internal surface of the control box, and install a fan to prevent t he internal temperature of the control box from exceeding the environm ental cond itions. Control box 30mm (1. 2 in.) or more 30mm (1[...]

  • Page 33

    2 - 4 2. INSTALLATION 2.4 Cable s tress (1) T he way of clampi ng the cable must be full y examined so that flexing stress and cable' s own weight stress are not appli ed to the cable connection. (2) In a ny application where the servo motor moves, the cables shoul d be free from excessive stress. For use in any application where the servo mot[...]

  • Page 34

    3 - 1 3. SIGNALS AND WIRI NG 3. SIGNALS AND W IRING W ARNING Any per son who is involv ed in wir ing sh ould be f ull y compete nt to d o the work. Befor e starti ng wiri ng, ma ke sure t hat the volt age is s afe in the test er mor e than 10 minutes after power -off. Ot herwise, you may get an elec tric shoc k. Groun d the ser vo am plifier a nd t[...]

  • Page 35

    3 - 2 3. SIGNALS AND WIRING 3.1 Standar d connect ion exam ple POINT For the connection of the p ower supply system, refer to S ection 3.7.1. 3.1.1 Pos ition control m ode (1) FX-10GM VDD RA1 RA2 RA3 18 15 5 14 8 9 16 17 12 EMG SON RES PC TL LSP LSN SD SG P15R LG 10 11 ALM 19 ZSP 6T L C CN1B CN2 13 COM 3 TLA CN1A 4 13 3 SD LG 14 MO1 LG MO2 CN3 A A [...]

  • Page 36

    3 - 3 3. SIGNALS AND WIRING Note: 1 . To prevent an elect ric shock, always connect the protective eart h (PE) terminal (t erminal marked ) of the servo ampl i fier to the protect ive earth (PE ) of the control box. 2. Connect the diode in the correct direct ion. If it is connected reversely, the servo amplifier will be faul ty and will not output [...]

  • Page 37

    3 - 4 3. SIGNALS AND WIRING (2) AD75P (A1SD75P ) VDD RA1 RA2 RA3 18 15 5 14 8 9 16 17 1 11 EMG SON RES PC TL LSP LSN SD SG P15R LG 10 12 ALM 19 ZSP 6T L C 14 7 16 17 4 LA LAR LB LBR LG OP P15R SD 1 6 CN1B CN2 CN3 13 COM 3 TLA (Note 4,9) CN1A 4 13 3 SD LG 14 MO1 LG MO2 CN3 A A COM INP LZ CR PG NP NG RD SG PP LZR SD LG 1 26 8 24 5 21 4 22 7 23 3 25 6[...]

  • Page 38

    3 - 5 3. SIGNALS AND WIRING Note: 1 . To prevent an elect ric shock, always connect the protective eart h (PE) terminal (t erminal marked ) of the servo ampl i fier to the protect ive earth (PE ) of the control box. 2. Connect the diode in the correct direct ion. If it is connected reversely, the servo amplifier will be faul ty and will not output [...]

  • Page 39

    3 - 6 3. SIGNALS AND WIRING 3.1.2 Speed control m ode RA1 RA2 RA3 18 10 SP1 SG CN1A 15 5 14 8 9 16 17 1 11 EMG SON RES ST1 ST2 LSP LSN SD SG P15R LG 10 2 ALM 19 ZSP 6T L C 15 5 14 7 16 17 4 LZ LZR LA LAR LB LBR LG OP P15R SD 1 6 CN2 CN3 13 8 7 SP2 VC 12 TLA 19 18 SA RD RA5 RA4 CN1A 3 VDD COM 9C O M 4 13 3 SD LG 14 MO1 LG MO2 CN3 A A Speed se lectio[...]

  • Page 40

    3 - 7 3. SIGNALS AND WIRING Note: 1 . To prevent an elect ric shock, always connect the protective eart h (PE) terminal (t erminal marked ) of the servo ampl i fier to the protect ive earth (PE ) of the control box. 2. Connect the diode in the correct direct ion. If it is connected reversely, the servo amplifier will be faul ty and will not output [...]

  • Page 41

    3 - 8 3. SIGNALS AND WIRING 3.1.3 T orque control m ode RA1 RA2 RA3 18 10 SP1 SG 15 5 14 9 8 10 1 11 EMG SON RES RS1 RS2 SG SD P15R LG 12 ALM 19 ZSP 6V L C 15 5 14 7 16 17 4 LZ LZR LA LAR LB LBR LG OP P15R SD 1 6 CN1B CN2 CN3 13 8 7 SP2 TC 2 VLA 19 R D RA4 CN1A 3 VDD COM 9C O M 4 13 3 SD LG 14 MO1 LG MO2 CN3 A A Speed s election 1 Serv o ampl ifier[...]

  • Page 42

    3 - 9 3. SIGNALS AND WIRING Not e: 1 . To prevent an electri c shock, always connect t he protective eart h (PE) terminal of the (t erminal marked ) servo amplifi er to the protecti ve earth (PE) of t h e cont rol box. 2. Connect t he diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty an d will not outp[...]

  • Page 43

    3 - 10 3. SIGNALS AND WIRING 3.2 Interna l connect ion diagram of ser vo amplifier The foll owing is t he internal connection diagram where the signal assi gnment has been made in the initial status in each contro l mode. 13 3 DC 15V CN1A CN1B CN1B CN1A CN1A CN1B CN1A PS SON SON SON SP2 SP2 5 7 PST PC ST1 RS2 TL ST2 RS1 RES EMG LSP LSN SG 8 9 14 15[...]

  • Page 44

    3 - 11 3. SIGNALS AND WIRING 3.3 I/O sign als 3.3.1 Connec tors and si gnal arrangem ents POINT The connector pin-out s shown ab ove are viewed from th e ca ble connector wiring section side. Refer to the next page for CN1A and CN1B sig nal assignme nt. (1) Si gnal arr angem ent 1 2 3 5 4 6 7 9 8 10 11 12 13 14 15 16 17 18 19 20 RXD MO1 TRE LG LG R[...]

  • Page 45

    3 - 12 3. SIGNALS AND WIRING (2) C N1A and CN1B signal assig n men t The signal assi gnment of connector changes with the control mode as indicated below; For the pins wh ich are given parame ter No.s in the related par ameter column, their signals can be changed using those parameters. (Note2) I/O S ignals in cont rol modes Connector Pin No. (Note[...]

  • Page 46

    3 - 13 3. SIGNALS AND WIRING Note: 1. I : Input sig nal, O: Output signal 2. P : P o si tion control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: T orque/position control change mode 3. By setting parameters No. 4 3 to 48 to m ake TL avail able, TLA can be [...]

  • Page 47

    3 - 14 3. SIGNALS AND WIRING 3.3.2 Sign al explanat ions For the I/O in terfaces (symbo ls in I/O column in the table), refer to Section 3.6. 2. In the control mode field of the tabl e P : Position control mode, S : Speed control mode, T: Torque control mode : Deno tes th at the signal may be u sed in the in itial setting statu s. : Deno te s tha t[...]

  • Page 48

    3 - 15 3. SIGNALS AND WIRING Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST Torque limit selection TL CN1B 9 Torque l imit s election d isconn ecting TL-S G makes inter nal torq ue limit 1 (parameter No. 28) valid and connecting them makes analog torque limit (TLA) valid. For details, refe r to (5), Sec[...]

  • Page 49

    3 - 16 3. SIGNALS AND WIRING Control mode Signal Symbol Connec - tor pi n No. Functions /Applicat ions I/O divisi on PST Speed sel ect i on 1 SP1 CN1A 8 <Speed co ntrol mod e> Used to sele ct the co mmand spe ed f or op era ti on. When using SP3, make it usable by making th e se tting of paramete r No. 43 to 48. DI-1 (Note) Input signals Spee[...]

  • Page 50

    3 - 17 3. SIGNALS AND WIRING Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST Proport ion control PC CN1 B 8 Connect PC-SG to switch th e speed amplifier from the propo rtion al int egra l typ e to t he pr oporti onal type. If the se rvo motor a t a st op is rota ted ev en one pu lse d ue to any external [...]

  • Page 51

    3 - 18 3. SIGNALS AND WIRING Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST <Position/ speed cont rol change mode> Used to s elect t he con trol m ode in the posi tion/sp eed control change m ode. (Note) LOP Control mode 0P o s i t i o n 1 Speed Note .0 : LO P-SG of f (op en) 1: LOP-SG on (short) [...]

  • Page 52

    3 - 19 3. SIGNALS AND WIRING (2) Output signals Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST Trouble ALM CN1B 18 ALM- SG ar e dis connect ed wh en p ower i s swi tched off or the protective circuit is activated to shut off the base circ uit. Without alarm, ALM-SG are connected within 1 after power on.[...]

  • Page 53

    3 - 20 3. SIGNALS AND WIRING Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST To use t his signal, set " 1 " in param eter No.49 . This signal is output when an alarm occurs. When there is no alarm, respective ordinary signals (RD, INP, SA, ZSP) are output. Alarm codes and alarm names are listed[...]

  • Page 54

    3 - 21 3. SIGNALS AND WIRING Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST Encod er Z- p ha se pulse (Open collector ) OP CN1A 14 Output s the zero -point signal of the encode r. One pulse is out put per se rvo mo tor revo lution . OP and LG are connec ted when t he zero- point positi on is reach ed. ([...]

  • Page 55

    3 - 22 3. SIGNALS AND WIRING (4) Power supply Control mode Signal S y m bol Connec- tor pi n No. Functions/Applicat ions I/O divisi on PST I/F internal power s upply VDD CN1B 3 Used to ou tput 24V 10% to across VDD-COM. When using this power supply f or digital interface, con nect it with COM. Permis sible cu rrent : 80mA Digital I/F power supply i[...]

  • Page 56

    3 - 23 3. SIGNALS AND WIRING 3.4 Deta iled desc ription of th e signals 3.4.1 Pos ition control m ode (1) Pul s e tr ai n in pu t (a) Input pulse waveform selection Encoder pulses may be input in any of th ree different forms, for which positive or negati ve logic can be cho sen. Set the command pul se train form in par ameter No. 21. Arrow or in t[...]

  • Page 57

    3 - 24 3. SIGNALS AND WIRING (b) Connections and waveforms 1) Open collect or system Connect as shown below: Appro x. 1.2k Appro x. 1.2k SG SD NP PP OPC VDD Servo amplifier The explanat i on assumes t hat the in put waveform has been set t o the negative l ogic and forward and reverse rotati on pulse trains (parameter No.21 has b een set to 0010). [...]

  • Page 58

    3 - 25 3. SIGNALS AND WIRING 2) Diffe rentia l line dr iver sy stem Connect as shown below: PP NP Serv o am plif ier PG NG SD The explanat i on assumes t hat the in put waveform has been set t o the negative l ogi c and forward and reverse rotati on puls e trains (par ameter No.21 has b een set to 0010 ). For th e differe ntial line driv er, the wa[...]

  • Page 59

    3 - 26 3. SIGNALS AND WIRING (2) In-position (INP) PF-SG are connected when the number of droop pulses in the deviati on counter falls within the preset in-posit ion range (parameter No. 5). INP-SG may remain connected when low-speed operation is performed with a large value set as the i n-positi on range. Servo-on (SON) Alarm Droop pulses In posit[...]

  • Page 60

    3 - 27 3. SIGNALS AND WIRING (5) Torque limit (a) Torque limit and generated torque By sett ing param eter No . 28 ( intern al tor que limi t 1), to rque i s alway s limi ted to the max imum value during operation. A relations hip between t he limit value and servo motor-generated torque is shown below. 0 0 100 Max. torque Generated torque Torque l[...]

  • Page 61

    3 - 28 3. SIGNALS AND WIRING 3.4.2 Speed control m ode (1) Speed setting (a) Speed command and speed The servo motor is run at the sp eeds set in t he parameters or a t the speed set in the applied voltage of the anal og speed command (VC). A relati onship between t he analog speed command (VC) applied voltage and the servo motor speed is shown bel[...]

  • Page 62

    3 - 29 3. SIGNALS AND WIRING (b) Speed selecti on 1 (SP1), speed selection 2 (SP2 ) and speed command value Choose a n y of the s peed settings made by th e i nternal speed commands 1 to 3 usin g speed selection 1 (SP1) and speed s election 2 (SP2) or the speed s etting made by the anal og speed command (VC). (Note) External input signal s SP2 SP1 [...]

  • Page 63

    3 - 30 3. SIGNALS AND WIRING 3.4.3 T orque control m ode (1) Torque control (a ) T o rq u e c omm a nd a n d g e ne r a te d t o rq u e A relationship between the applied voltage of t he analog t orque command (TC) and t he torque generated by the servo motor is shown below. The maximum torque is generated at 8V. Note that the to rque g enera ted a[...]

  • Page 64

    3 - 31 3. SIGNALS AND WIRING (b) Analog torq ue command offset Using pa rameter No. 30, the offset voltage of 999 to 999 mV can be add ed to th e TC applied volta g e as shown bel ow. 0 8( 8) Max. torque Generated torque TC applied vol tage [V] Parameter No.30 offset rang e 999 t o 999mV (2) Torque limit By sett ing para meter No . 28 (in ternal to[...]

  • Page 65

    3 - 32 3. SIGNALS AND WIRING (b) Speed selectio n 1(SP1) /speed selectio n 2(SP2)/ speed se lection 3( SP3) and spe ed limit values Choose a ny of the speed settings made by t he internal s peed limits 1 to 7 using sp eed selection 1(SP1 ), speed selection 2(SP2) and speed s election 3(SP3) or the speed s etting made by the speed limit command (V L[...]

  • Page 66

    3 - 33 3. SIGNALS AND WIRING 3.4.4 Pos ition/speed co ntrol chan ge mode Set "00 01" in par amete r No. 0 to swi tch to the po sition /spee d contro l chang e mod e. Thi s func tion i s not availa ble in the ab solute position de tectio n system. (1) C ontrol ch ange (LO P) Use control change (LO P) t o switch between the position control[...]

  • Page 67

    3 - 34 3. SIGNALS AND WIRING (3) Sp ee d se tting i n sp eed co nt rol mod e (a) Speed command and speed The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the speed set in the a pplied voltage of t he analog s peed command (VC). A relationship between analog speed command (VC) applied voltage and servo moto[...]

  • Page 68

    3 - 35 3. SIGNALS AND WIRING 3.4.5 Speed /torque con trol chang e mode Set "00 03" in par ameter No. 0 to swi tch to the sp eed/tor que con trol chan ge mod e. (1) C ontrol ch ange (LO P) Use control change (LO P) to s wit ch between the speed cont rol mode and the torque control mode from an exte rnal con tact. Relation ships be tween LO[...]

  • Page 69

    3 - 36 3. SIGNALS AND WIRING (4) Sp ee d li mit in t orq ue con trol mode (a) Speed limit valu e and speed The speed is limited to the li mit value set in parameter No. 8 (internal speed limi t 1) or the value set i n the applied voltage of t he analog s peed limit (VLA ). A relationshi p between the analog speed limit ( VLA) applied voltage and th[...]

  • Page 70

    3 - 37 3. SIGNALS AND WIRING 3.4.6 T orque/positi on control ch ange m ode Set " 0005" in param eter N o. 0 to switc h to th e torqu e/po sition c ontro l change mode. (1) C ontrol ch ange (LO P) Use control change (LO P) to switch between the torque con trol mode and the position control mode from an external contact. Rela tionships betw[...]

  • Page 71

    3 - 38 3. SIGNALS AND WIRING 3.5 Alarm occur rence timing c hart CAUTION W hen an alarm has oc curred , remov e its c ause, m ake sur e that t he oper ation sign al is not be ing in put, en sure safety, an d reset the alarm befo re resta rting operat ion. When an a larm occurs in the servo amplifi er, the base circuit is shut off and the servo moto[...]

  • Page 72

    3 - 39 3. SIGNALS AND WIRING 3.6 Interf aces 3.6.1 Comm on line The foll owing diagram sh ows t he power suppl y and its common li ne. DC24V CN1A CN1B CN1A CN1B DO-1 SG OPC PG NG SG P15R LG TLA VC etc. SD OP MR MRR SM DI-1 COM VDD ALM .etc LG SD RDP RDN SDP SDN LG CN3 RA CN2 SD MO1 MO2 LG SG TXD RXD RS-232C RS-422 (Note) Analog input ( 10V/max. c u[...]

  • Page 73

    3 - 40 3. SIGNALS AND WIRING 3.6.2 Detai led descript ion of the interfac es This s ection gives the details of the I/ O si gnal interfaces (refer to I/O Division in the table) indi cated in Section s 3.3.2. Refer to this sec tion and conn ect the interfac es with th e extern al equip ment. (1) Digital inpu t interface DI-1 Give a signal with a rel[...]

  • Page 74

    3 - 41 3. SIGNALS AND WIRING (b) Lamp load For use of internal p ower suppl y For use of externa l power su pply 24V DC VDD COM R Servo amplifi er ALM, e tc . SG COM SG R 24VDC 10% Servo amplifier ALM, et c. VDD 24VDC Do not connect VDD-COM. (3) Pul s e trai n in pu t inte r fac e DI- 2 Provide a pulse train signal i n the open collector or differe[...]

  • Page 75

    3 - 42 3. SIGNALS AND WIRING (b) Differential line driver syst em 1) Inte rface SD PG(NG) PP(NP) Max. input pulse frequency 500kpps Serv o am plif ier Am26LS31 or equivalent About 100 2) Condit ions of th e input pulse 0.9 PP PG tc tHL tc tLH tF tLH tHL 0.1 s tc 1 s tF 3 s NP NG 0.1 (4) En cod e r pul se outp ut DO -2 (a) Open collector s ystem Int[...]

  • Page 76

    3 - 43 3. SIGNALS AND WIRING (b) Differential line driver syst em 1) Inte rface Max. output current: 35mA LA (LB, LZ) LAR (LBR, LZR) LG SD LA (LB, LZ) LAR (LBR, LZR) SD Servo amplifi er Servo amplifi er Am26LS32 or equiv a lent High-sp eed photocoupler 150 100 2) Outp ut pu lse Servo motor CCW rotation LA LAR LB LBR LZ LZR T /2 400 s or more OP LZ [...]

  • Page 77

    3 - 44 3. SIGNALS AND WIRING (7) Sourc e inpu t interfac e When u sing the inp ut inte rface of so urce ty pe, all Dl-1 in put s ignals are of source type. Source output cannot be provided. For use of internal power supply For us e of ex ternal power supply SG COM 24VDC VDD TR R: Approx. 4.7 SON, etc. (Note) For a transistor Approx. 5mA V CES 1.0V [...]

  • Page 78

    3 - 45 3. SIGNALS AND WIRING 3.7 Input power suppl y circuit CAUTION W hen the s ervo am plifier has bec ome f aulty, s witch p ower off on the s ervo amplif ier p ower si de. Con tinuous flow of a larg e curr ent ma y cause a fire. Use the tro uble signa l to sw itch po wer off . Otherwis e, a re generat ive br ake trans istor fau lt or the lik e [...]

  • Page 79

    3 - 46 3. SIGNALS AND WIRING 3.7.2 T erminals The posit ions and signal arrangements of the terminal blocks change with the capacity of the servo amplifie r. Refer to Section 11.2.1 . Symbol Signal Description Supply L 1 , L 2 and L 3 with the f ollowing power: For 1-phase 230VAC, connect the power supply to L 1 /L 2 and leav e L 3 open . Servo a m[...]

  • Page 80

    3 - 47 3. SIGNALS AND WIRING 3.7.3 Power -on seque nce (1) Po wer-on proce dure 1) Alw ays wire the po wer sup ply as shown in above Section 3.7.1 u sing the magn etic contactor wi th the main circu it power s upply (three-phase 200V: L 1 , L 2 , L 3 , s ingle-ph ase 230V : L 1 , L 2 ). Configure up an extern al sequence to switch off th e magnetic[...]

  • Page 81

    3 - 48 3. SIGNALS AND WIRING 3.8 Conn ection of s ervo am plifier and s ervo m otor 3.8.1 Connec tion instr uctions W ARNING Insulate the con nections of th e power s uppl y termina ls to pre vent a n electr ic shock . CAUTION Connec t the wires to the corr ect phas e term inals ( U, V, W ) of the servo amplifi er and ser vo m otor. Oth erwise, the[...]

  • Page 82

    3 - 49 3. SIGNALS AND WIRING Servo m otor Connection diagram HC-KFS053 (B) to 43 (B) HC-MFS053 (B) to 73 (B) HC-UFS13 (B) to 73 (B) U V W Servo amplifier B1 B2 24VDC EMG CN2 (Not e 1 ) Encoder Electro- magnetic brake To be shu t off when servo on signal switches off or by ala rm si gnal Encoder cable U (Red) V (White) W (Black) (Gre en) Motor Servo[...]

  • Page 83

    3 - 50 3. SIGNALS AND WIRING 3.8.3 I/O term inals (1) HC-KFS HC-MF S HC-UFS300 0r/min s eries 24 13 4 Power suppl y connector ( Molex make) Without electr omagnetic brake 5557-04R-21 0 (receptac le) 5556PBT L (F ema le terminal) With electrom agnetic br ak e 5557-06R-21 0 (receptac le) 5556PBT L (F ema le terminal) Encoder cable 0.3m Power suppl y [...]

  • Page 84

    3 - 51 3. SIGNALS AND WIRING (2) HC-SFS HC-RF S HC-UFS2000 r/m in series Servo motor side connectors Servo motor For power supply For encoder Electromagnetic brake connector HC-SFS81(B) HC-SFS52(B) to 152(B ) HC-SFS53(B) to 153(B ) CE05-2A22- 23PD-B The c onnec t or for power is shared. HC-SFS121(B) to 301(B ) HC-SFS202(B) 352(B) HC-SFS203(B) 353(B[...]

  • Page 85

    3 - 52 3. SIGNALS AND WIRING 3.9 Serv o motor with electrom agnetic brak e CAUTION Configur e th e electrom agnet ic brak e oper ation circ uit so that it is ac tivated not onl y by the ser vo amplif ier signa ls but also b y an extern al emerge ncy stop s ignal. EMG RA 24VDC Contacts must be open w hen servo-on signal i s off or when an alarm (tro[...]

  • Page 86

    3 - 53 3. SIGNALS AND WIRING (3) T i m ing charts (a) Servo-on signal comm and (from controller) ON/OFF Tb (ms) after the servo-on (SON) signal is swit ched off, the servo lock is released and the servo motor coasts. If the electr omagnetic brake is made valid in the servo lock status, the b rake life may be shorter. Therefore, when usin g the elec[...]

  • Page 87

    3 - 54 3. SIGNALS AND WIRING (c) Alarm occurrence Servo motor speed ON OFF Base cir cuit Electromagnetic brake inte rlock (MBR) Invalid (ON) Valid( OFF) Trouble (ALM) No (ON) Yes(O FF) Dynamic brake Dynamic brake Electromagnetic brake Electromagnetic brake operation delay time Electromagnetic brake (10ms) (d) Both main and con trol circuit power su[...]

  • Page 88

    3 - 55 3. SIGNALS AND WIRING 3.10 Gro unding W ARNING Ground th e serv o ampl ifier a nd ser vo motor securel y. To pre vent an electric shock , alwa y s con nect the protec tive ear th (PE) term inal of the ser vo am plifier with th e protec tive e arth (P E) of the contr ol box. The servo amplifier switches t he power transistor on-off to s upply[...]

  • Page 89

    3 - 56 3. SIGNALS AND WIRING 3.11 Ser vo amplif ier term inal block (TE2) wirin g method (1) T erminati on of t he cabl es Solid wire: After the shea th has been stripped, t he cable can be used as it is. (Cabl e size: 0.2 to 2.5mm 2 ) Approx. 10mm Twiste d wire: Use the cable after str ippin g the shea th an d twi stin g the core. A t thi s tim e [...]

  • Page 90

    3 - 57 3. SIGNALS AND WIRING (2) Connection Insert the core of the cable into the opening and tighten the screw wit h a flat-bla de screwdriver so that the cabl e does not come off. (Tightening torque: 0.5 t o 0.6N m) Before in serting the cable into the opening, make sure that the screw of the terminal is ful ly loos e. When using a cabl e of 1.5m[...]

  • Page 91

    3 - 58 3. SIGNALS AND WIRING MEMO[...]

  • Page 92

    4 - 1 4. OPERATION 4. OPERATION 4.1 W hen switching po wer on f or the first tim e Before starti ng operation, check the followi ng: (1) W iring (a) A correct power supply is connected to the power inpu t termin als ( L 1 , L 2 , L 3 , L 11 , L 21 ) of the servo amplifie r. (b) The servo mot or power supply terminals (U, V, W) of t he servo amplifi[...]

  • Page 93

    4 - 2 4. OPERATION 4.2 Startup W ARNING Do no t oper ate the switches with wet hands . You ma y get an e lectric sh ock. CAUTION Befor e starti ng oper ation, c heck th e param eters. Some m achines ma y perform unexpec ted oper atio n. Duri n g powe r- on fo r so me a fte r powe r- o ff, do no t tou ch or cl o se a pa rt s (c able et c. ) to th e [...]

  • Page 94

    4 - 3 4. OPERATION (4) Servo-on Switch t he servo-on in t he followin g procedure: (a) Switch on m ain circuit/con trol power. (b) Switch on the servo-on signal (SON). When pla ced in the s ervo-on status, t he servo a mplifier is ready t o operate an d the servo mot or is locked. (5) C omm and puls e input Entry o f a pu lse tr ain fr om the p o s[...]

  • Page 95

    4 - 4 4. OPERATION 4.2.3 Speed control m ode (1) Power on (a) Switch off the servo-on (SON) signal. (b) When main circuit power/control circuit power is switched on, the display shows "r (servo motor spee d)", an d in tw o sec ond l ater, show s data . (2) T est oper ation Using jog operation in the test operati on mode, make sure that th[...]

  • Page 96

    4 - 5 4. OPERATION (6) Stop In any of the followin g statuses, the servo amplifi er interrupts and stops the operation of the servo motor: Refer to Section 3.9, (2 ) for the servo mot or equipped with electromagnetic brake. Note that simultan eous ON or simultaneous OFF of stroke end (LSP, LSN) O FF and forward rotati on sta rt (ST1) or rev erse ro[...]

  • Page 97

    4 - 6 4. OPERATION (4) Servo-on Switch t he servo-on in t he followin g procedure: (a) Switch on m ain circuit/con trol power. (b) Switch on the servo-on signal (SON) (short SON-SG). When placed in the servo-on status, t he servo amplifier is ready to operate a nd the servo motor is locked. (5) Start Using speed s election 1 (SP1) a nd speed select[...]

  • Page 98

    5 - 1 5. PARAMETERS 5. PARAME TERS CAUTION Ne ver adjust or change the par ameter values ex tremel y as it wi ll mak e operation instab le. 5.1 Param eter list 5.1.1 Par ameter writ e inhibit POINT After se tting the parameter No. 19 value, switch po wer of f, then o n to make tha t setting valid. In the MR-J2S-A servo amplifier, its parameters are[...]

  • Page 99

    5 - 2 5. PARAMETERS 5.1.2 Lists POINT For any para meter whose symbol is preceded by *, set the parameter value and s witch power off once, then s witch it on again to mak e that parameter se tting valid. For details of the paramet ers, refer to the corresponding items. The s ymbols i n the cont rol mode column of the ta ble indicat e the following[...]

  • Page 100

    5 - 3 5. PARAMETERS No. Symbol Name Control mode Initial value Unit Cust omer setti ng 20 *OP2 Function s election 2 P S T 0000 21 *OP3 Function selection 3 (Command pulse selection) P 0000 22 *OP4 Function s election 4 P S T 0000 23 FFC Feed forward gain P 0 % 24 ZSP Zero spe ed P S T5 0 r / m i n Anal og sp eed c ommand maxi mum s peed S (Note1)0[...]

  • Page 101

    5 - 4 5. PARAMETERS No. Symbol Name Control mode Initial value Unit Cust omer setti ng 50 For manufacturer setting 0000 51 *OP6 Function s election 6 P S T 0000 52 For manufacturer setting 0000 53 *OP8 Function s election 8 P S T 0000 54 *OP9 Function s election 9 P S T 0000 55 *OP A Function selection A P 0000 56 SIC Ser ial communication time-out[...]

  • Page 102

    5 - 5 5. PARAMETERS (2) Details li st Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Control mod e , reg enerati ve brake op tion sel ecti on Used to select t he cont rol mode and re generative brake op tion. Select the co ntrol mode. 0:Position 1:Position and speed 2:Speed 3:Speed and torque 4:Torque 5:Torque an[...]

  • Page 103

    5 - 6 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 2 ATU Auto tuning Used to s et the respo nse level, etc . for exe cution of auto tuning. Refer to Chapte r 7. Auto tuning respon se leve l settin g If the machine hunts or generat es large gear sound, decre ase the set value. To improve performanc[...]

  • Page 104

    5 - 7 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 5 INP In-position range Used to set t he in -posit ion ( INP) signal outp ut ra nge i n the comma nd pul se in cre m ent s pr io r to e le ct r o nic gear c alc u lat io n. 100 pulse 0 to 10000 P 6 PG1 Positi on lo op ga in 1 Used to s et the gain[...]

  • Page 105

    5 - 8 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Internal speed command 2 Used to s et speed 2 of int ernal s peed comma nds. S 9S C 2 Internal speed limit 2 Used to s et speed 2 of int ernal speed limi ts. 500 r/min 0 to instan- tane ous permi- ssible speed T Internal speed command 3 Used to s [...]

  • Page 106

    5 - 9 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 14 TQC Torq ue co mmand time consta nt Us ed to set the const ant of a low pa ss fi lter in re spon se to th e tor que comman d. Torque command TQC TQC Time Afte r filtered TQC: Torque command time co nstant Torque 0m s 0 to 20000 T 15 *SNO Statio[...]

  • Page 107

    5 - 10 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Basic pa rameters 17 MOD Analog monitor output Use d to set the s i g n al prov ided to the analog mon i to r ou tput. ch1 ch2 Settin g 0 Analog monitor outpu t selection Servo motor spee d ( 8V/max. speed) 1 Generated torqu e ( 8V/max. torque) 2[...]

  • Page 108

    5 - 11 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 18 * DMD St a tus disp l ay se lec tion Used to select t he status display sh own at power-on. Selection of status display at power-on 0: Cumulative feedback pulses 1: Servo motor speed 2: Droop pulses 3: Cumulative command pulses 4: Command puls[...]

  • Page 109

    5 - 12 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Paramet er blo ck Used to sel ect th e refe rence a nd w rite ranges of th e para meters . Operati on can b e perf ormed for th e para meters marked . Set value Operation Basic paramet er s No. 0 to No. 19 Expansion paramet ers 1 No. 20 to No. 49[...]

  • Page 110

    5 - 13 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 21 *OP3 Function selection 3 (Command p ulse selecti on) Used to s elect t he inp ut f orm of the p ulse t rain inpu t sign al. (Ref er to S ecti on 3.4.1 .) Command pulse train input form 0: Forward/reverse rotation pulse train 1: Signed pulse t[...]

  • Page 111

    5 - 14 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 23 FFC Feed for war d gain Used to set the fee forward gain. At the setting of 100%, droop pulses during constant-speed oper ation will be almost zero. Note that s udden acc elerati on/d ecelera tion w ill i ncrea se ov ersh oot. 0% 0 to 100 P 24[...]

  • Page 112

    5 - 15 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Anal og s p e ed comma nd off s et Used to s et the offs et vol tage of th e ana log sp eed comma nd ( VC). For examp le, if CC W rota tion i s pr ovided by s witch ing on for ward rotation start (ST1) with 0V ap plied to VC, set a negativ e valu[...]

  • Page 113

    5 - 16 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 39 VDC Speed di ffere ntial comp ensat ion Used to set the d ifferential compensation. Mad e valid when the p rop ortion c ontr ol sig nal i s swit ched on. 980 0 to 1000 P S 40 For manufactur er setting Must not be changed. 0 P S T 41 *DIA Input[...]

  • Page 114

    5 - 17 5. PARAMETERS Class No. Symbol Name and function In itial value Unit Setting range Control mode 43 *DI2 Input signal selection 2 (CN1B-pin 5) This paramete r is unavaila ble when pa rameter No.42 i s set to assign the control change signal (L OP) to CN1B-pin 5. Allows any input signal t o be assigned to CN1B-pin 5. Note that t he setting dig[...]

  • Page 115

    5 - 18 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 45 * DI4 Input signal selection 4 (C N1A-pin 8) Allows any input signal t o be assigned to CN1A-pin 8. The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43). Position control mode Input signals o[...]

  • Page 116

    5 - 19 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Expansio n parameters 1 49 *DO1 Output signal selecti on 1 Used to select t he connect or pins to output t he alar m code, warning (WNG) and battery warning (BWNG). Setting of alarm code output Connector pins Set value CN1B-19 CN1A-18 CN1A-19 0 Z[...]

  • Page 117

    5 - 20 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 50 For manufactur er setting Must not be changed. 0000 51 *OP6 Function selection 6 Used to sele ct the opera tion to be perfor med w hen t he ala rm r eset signal switches on. 0 00 Operation to be performed when the alarm reset signal switches o[...]

  • Page 118

    5 - 21 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 55 *OPA Function selecti on A Used to s elect t he posi tion comma nd a ccel eration/d ecelerati on ti me constant (paramet e r No. 7) c ontrol syst em. 00 0 0: Primary delay 1: Linear acceleration/deceleration Position command acceleration/decel[...]

  • Page 119

    5 - 22 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 60 LPF Lo w-pass filter/adaptive vibration suppression c ontrol Used to s et the low-pass filter and adaptive vibration suppressi on control . (R efer t o Chapt er 8.) 0 Low- pas s f i lt e r sel ectio n 0: V al id 1: Invalid When you c hoose &qu[...]

  • Page 120

    5 - 23 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode 65 *CDP Gain changing selection Used to select the gain changing conditio n. (Refer to Section 8.3.) 0 00 Gain changing selection Gains are changed in a ccordance with the settings of parameters No. 61 to 64 under any of the following conditions:[...]

  • Page 121

    5 - 24 5. PARAMETERS Class No. Sym bol Name and function Initia l value Unit Setting range Control mode Internal speed command 5 Used to s et speed 5 of int ernal s peed comma nds. S 73 SC5 Internal speed limit 5 Used to s et speed 5 of int ernal speed limi ts. 300 r/min 0 to in- stanta- neous perm i- ssible speed T Internal speed command 6 Used to[...]

  • Page 122

    5 - 25 5. PARAMETERS 5.2 Deta iled desc ription 5.2.1 Elec tronic gear CAUTION W rong sett ing ca n lead to unexp ected fas t rotat ion, ca using i njur y . POINT The guideli ne of the electro nic gear s etting range i s 50 1 CDV CMX 500. If the set value is outs ide this ra nge, noise may be generat ed during accelerati on/ deceleration or opera t[...]

  • Page 123

    5 - 26 5. PARAMETERS (b) Conveyor setting exampl e For rotation in incremen ts of 0.01 per pulse Machine sp ecificatio ns Table : 36 0 /rev Reduction ratio: n 4/64 Servo motor resolution: P t 13107 2 [pulse s/rev] Table Timi ng be lt : 4/ 64 Servo motor 131072 [p ulse/rev] CDV CMX Pt 131072 65536 1125 0.01 4/64 360 .................................[...]

  • Page 124

    5 - 27 5. PARAMETERS (3) Set ting f or use of AD75 P The AD75P also has the following electronic gear paramet ers. Normally, the servo amplifier side electronic gear must also be set due t o the restriction on the command puls e frequency (d ifferenti al 400kpuls e/s, open coll ect or 200kpuls e/s). AP: Number of pulses per motor revolution AL: Mov[...]

  • Page 125

    5 - 28 5. PARAMETERS To rotate the servo motor at 3000r /min in the open co llector system ( 200kpul se/s), set the electro nic gear as fo llows CDV CMX N 0 f 60 pt f : Input pulses [pulse/s] N 0 : Servo motor speed [r/mi n] Pt : Servo motor resoluti on [pulse/rev] CDV CMX 3000 60 200 131072 CDV CMX 3000 60 131072 200 60 200000 3000 131072 409 6 12[...]

  • Page 126

    5 - 29 5. PARAMETERS 5.2.2 Anal og output The s ervo stat us can b e output to two channel s in terms of volta ge. Use this funct ion when using an ammeter to moni t or the servo status or synchronizing the t orque/speed with t he other servo. The serv o amp lifie r i s fac to ry - set to o u tpu t th e m o to r sp e ed to ch 1 and th e ge n e rate[...]

  • Page 127

    5 - 30 5. PARAMETERS Change the follow ing digits of parameter N o.17: Analog monitor c h1 output selection (Signal output to across MO1-LG) Analog monitor c h2 output selection (Signal output to across MO2-LG) Param eter N o. 1 7 00 Parameters No.31 and 32 can be used to set th e offset volta ges to the anal og outp ut voltages. The sett ing range[...]

  • Page 128

    5 - 31 5. PARAMETERS 5.2.5 Pos ition sm oothing By setting the po sition command acceleration/dece leration time constant (parame ter No.7), you can run the servo motor smoothly in response to a s udden position command. The foll owing diagrams show t he operation patterns of the s ervo motor in response to a position command when you have set the [...]

  • Page 129

    5 - 32 5. PARAMETERS MEMO[...]

  • Page 130

    6 - 1 6. DISPLAY AND O PERATION 6. DISPLAY AND OPERATION 6.1 Displ ay flowchart Use the display (5-digit , 7-segment LED) on the front panel of the servo amplifier for status display, paramete r setting , etc. Set the par ameters bef ore opera tion, diagn ose an alarm, con firm exte rnal sequences, and/or confirm the operati on status. Press the &q[...]

  • Page 131

    6 - 2 6. DISPLAY AND OPER ATION 6.2 Status disp la y The servo s tatus during operation is s hown on the 5 -digit, 7-segment L ED display. Press the "UP" or "DOWN" button to change display data a s desired. When the requ ired data is se lected, the corresponding symbo l appear s. Pres s the "SET " button to display its[...]

  • Page 132

    6 - 3 6. DISPLAY AND OPER ATION 6.2.2 St atus displa y l ist The foll owing tabl e l ists the s ervo status es that may be s hown: Refer to Appendix 3 for the measurement point. Name Symbol Uni t Descripti on Displa y range Cumulative feedback pulse s C puls e Feedba ck p ulses fro m the servo m oto r encod er a re cou nted and disp layed . The val[...]

  • Page 133

    6 - 4 6. DISPLAY AND OPER ATION Name Symbol Uni t Descripti on Displa y range Within one-revoluti on posit i on h igh Cy2 100 pulse Th e withi n one-revolution position is displayed in 100 pulse incr em en t s of th e en coder . The va lue retur ns to 0 wh en it ex ceed s the maxi mum numbe r of pulse s. The va l ue is i nc rem ented in the CCW dir[...]

  • Page 134

    6 - 5 6. DISPLAY AND OPER ATION 6.3 Diagnos tic mode Name Di splay D escrip tion Not r eady. Indicates that the s ervo amplifier is being initialized or an alarm has occurred. Sequence Ready. Indi cates t hat t he serv o was switc hed on aft er c omplet ion of initialization and the se rvo amplifier is ready to operate. External I/O signal display [...]

  • Page 135

    6 - 6 6. DISPLAY AND OPER ATION Name Di splay D escrip tion Motor s eries Press the " SET" butt on to show t he motor seri es ID of th e servo motor c urrentl y conne cted. For indication d etails, refer to the optional MELSERVO Serv o Motor Instru ction Man ual. Motor type Press the "SET" button to show the motor typ e ID of th[...]

  • Page 136

    6 - 7 6. DISPLAY AND OPER ATION 6.4 Alarm mode The current alarm, past al arm history and parameter error are displayed. The lower 2 digits on the display indicate the alarm number tha t has occurred or the parameter num ber in error. Display example s are shown below. Name Di splay De script ion Indi cates no occurr ence of an a larm. Current alar[...]

  • Page 137

    6 - 8 6. DISPLAY AND OPER ATION 6.5 Param eter m ode The parameters whose abbreviati ons are marked are mad e val id by ch anging the set ting and then switching power off once and switching it on aga in. Refer to Section 5. 1.2. (1) Op eration exampl e The followin g example shows the operati on procedure performed after power-on to change the con[...]

  • Page 138

    6 - 9 6. DISPLAY AND OPER ATION 6.6 Externa l I/O signa l displa y The ON/OFF states of the digi tal I/O si gnal s connected to the servo a mplifier can be confi rmed. (1) Operation Call t he displa y screen shown aft er power-on. Using t he "MODE" button, show the diagnostic screen. Press UP once. External I/O signal display screen (2) D[...]

  • Page 139

    6 - 10 6. DISPLAY AND OPER ATION (a) Control modes and I/O signals (Note 2) Sym bols of I/O si gnals in control m odes Connector Pin No. Signal input/out put (Note 1) I/O P P/S S S/T T T/P Related paramet er 8 I CR CR/SP1 SP1 SP 1 SP1 SP1/CR No .43 to 48 1 4 O O PO PO P O PO PO P 18 O INP INP/SA SA SA/ /INP No.49 CN1A 1 9 O R DR DR DR DR DR D N o .[...]

  • Page 140

    6 - 11 6. DISPLAY AND OPER ATION (3) De fa ul t si gn al indi ca tio n s (a) Position control mode Lit: O N Extinguish ed:OFF Input signals Output signals TL (CN 1 B-9) Tor que limit PC (CN 1 B-8) P roportional control CR (CN 1 A-8) Clear RES (CN 1 B-14) Reset SON(CN 1 B-5) S ervo-on LSN (CN 1 B-17) Reverse rotation stroke end LSP (CN 1 B-16) Forwa[...]

  • Page 141

    6 - 12 6. DISPLAY AND OPER ATION 6.7 Output s ignal for ced output (D O forced out put) POINT When the servo system is used i n a vertica l lift appli cat ion, turni ng on the electromagnet ic brake interl ock signal after assi gning it to pin CN1B-19 will releas e the electr omagnetic brak e, causi ng a drop. Take drop preventive measures on the m[...]

  • Page 142

    6 - 13 6. DISPLAY AND OPER ATION 6.8 Tes t operation m ode CAUTION The test operat io n mode is d esig ned to c onfir m serv o ope rat ion and not t o co nfir m ma chine opera tion. I n this mode, do not us e the servo motor wit h the mac hine. Alwa ys use the servo m otor alone. If an y operati onal f ault has occurr ed, stop operati on using the [...]

  • Page 143

    6 - 14 6. DISPLAY AND OPER ATION 6.8.2 Jog o peration Jog operation can be performed when there is no command from the external comm and devi ce. (1) Operation Conne ct EMG-SG to start jo g operatio n and con nect VDD- COM to use the interna l power su pply. Hold dow n the "U P" or "DOWN " button to run the se rvo motor. Release[...]

  • Page 144

    6 - 15 6. DISPLAY AND OPER ATION 6.8.3 Pos itioning oper ation POINT The servo configuration soft ware is required to perform positioning operation. Positioni ng operation can be performed once wh en there is no command from the external command device. (1) Operation Conne ct EMG-SG to start posi tioning ope ration and c onnect VD D-COM to u se the[...]

  • Page 145

    6 - 16 6. DISPLAY AND OPER ATION 6.8.4 Motor -less operati on Without connecting the servo motor, you can provide output signal s or monitor the status display as i f the servo motor is running in response to external input signals. This operation can be used to check the sequence of a host program mable contro ller or the like. (1) Operation After[...]

  • Page 146

    7 - 1 7. GENERAL GAI N ADJUSTMENT 7. GENERAL GAIN ADJUS TMENT POINT For use in t he torque control mode, you need not ma ke gain adjustment . 7.1 Diff erent adjustm ent methods 7.1.1 Adjus tment on a single s ervo am plifier The gain ad justmen t in this sectio n can be made on a sing le servo ampl ifier. Fo r gain adjus tment, fir st execute a uto[...]

  • Page 147

    7 - 2 7. GENERAL GAIN ADJUSTMENT (2) Adj ustment seque nce and mode us age Usage Used when you wa nt t o match the p osition gain (PG1) be tween 2 or more axes. No rmally not used for other purp oses. Allows adjustment by merely chan gin g the re spon se le ve l se t ting . Fi r st u se th is mode to mak e adjustment. Used when the c ondit ions of [...]

  • Page 148

    7 - 3 7. GENERAL GAIN ADJUSTMENT 7.2 Auto tuning 7.2.1 Auto t uning m ode The servo amplifier has a real-time auto tuning function which estimates the machine characteristi c (load inerti a momen t ratio) in real time an d au tomati cally se ts the optim um gain s acco rding to th at value . Thi s function permits eas e of gain adjust ment of the s[...]

  • Page 149

    7 - 4 7. GENERAL GAIN ADJUSTMENT 7.2.2 Auto t uning m ode operation The block dia gram of real-t ime auto tuning is shown bel ow. Motor 7 0 1 0 SW1 Command Automat ic settin g Control gains PG1,VG 1 PG2,VG 2,VI C Current control Current feedback Load inertia mome nt Encoder Position/spe ed feedb ack Real-time auto tuning secti on Sp eed feed bac k [...]

  • Page 150

    7 - 5 7. GENERAL GAIN ADJUSTMENT 7.2.3 Adjus tment proc edure b y auto tuning Since auto tuning is made valid before shipment from the factory, simply running the servo mo tor autom atica lly se ts the o ptimum gain s that match the m achine . Mere ly chan ging the resp onse level setting value as require d comple tes the adju stment. The adju stme[...]

  • Page 151

    7 - 6 7. GENERAL GAIN ADJUSTMENT 7.2.4 Respo nse level s etting in auto tuning m ode Set t h e response of the whole servo system in the first digit (response level setting) of parameter No. 2. As the re sponse lev el setting is increa sed, the tr ackabil ity and se ttling time for a comm and decre ases, but a too hig h respo nse lev el wi ll gener[...]

  • Page 152

    7 - 7 7. GENERAL GAIN ADJUSTMENT 7.3 Manual m ode 1 ( simple m anual adj ustment) If you a re not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with three parameters. 7.3.1 Oper ation of m anual m ode 1 In this mode , set ting the three g ain s of PG 1 (po sitio n con trol gain 1) , VG 2 ( speed cont rol g ain [...]

  • Page 153

    7 - 8 7. GENERAL GAIN ADJUSTMENT (c)Adjustment description 1) Speed contro l gain 2 ( VG2: par ameter N o. 37) This parameter determines the response level of the s peed control loop. Increasing this val ue enhances res ponse but a too high valu e will make the mechanical s ystem liable to vibrat e. Th e actual response frequency of the speed loop [...]

  • Page 154

    7 - 9 7. GENERAL GAIN ADJUSTMENT (c) Adjustment description 1) Position control g ain 1 (PG1: p arameter No. 6) This paramet er determines the response level of the position control loop. Increasing PG1 improves t rackability t o a position command but a too hi gh value will make overshooting liable to occu r at the ti me of sett l ing. PG1 gui del[...]

  • Page 155

    7 - 10 7. GENERAL GAIN ADJUSTMENT 7.4 Interpo lation m ode The i nterpolation mode is used to match the position control gains of the axes when performing the interpolati on operation of s ervo motors of two or more a xes for an X-Y table or the like. In this mode, the model co ntrol g ains (PG1 , VG1) w hich dete rmine command t rackabi lity are s[...]

  • Page 156

    7 - 11 7. GENERAL GAIN ADJUSTMENT 7.5 Dif ferences in au to tuning between M ELSERVO- J2 and MEL SERVO-J 2-Super 7.5 .1 Respon se level settin g To meet higher response demands, the MELSERVO-J 2-Super series has been changed i n response level setting range from the MELS ERVO-J2 series. The followin g table lists compar ison of the response le vel [...]

  • Page 157

    7 - 12 7. GENERAL GAIN ADJUSTMENT MEMO[...]

  • Page 158

    8 - 1 8. SPECIA L ADJUSTMENT FUNCTI O NS 8. SPECIAL A DJUST MENT FUNCTIONS POINT The functions given in this chapter need not be used genera lly. Use them if you are not sat isfied with the mach ine sta tus after m aking adjustm ent in the me thods in Ch apter 7. 8.1 Machi ne resonance suppress ion filter and adapti ve vibration s uppressio n contr[...]

  • Page 159

    8 - 2 8. SPECIAL ADJUSTMENT FUNCT IONS You can use the machine resonance suppression filter 1 (paramet er No. 58) and machine resonance suppression filt er 2 (paramet er No. 59) to suppress the vibrat ion of two resonance frequencies. Note that if adapti ve vibr ati on suppression control is made vali d, the machine resonance suppression filter 1 ([...]

  • Page 160

    8 - 3 8. SPECIAL ADJUSTMENT FUNCT IONS POINT If the frequency of machine res onance is unknown, decrea se the notch frequency from higher t o lower ones in order. T he optimum notch freque ncy is set a t the point w here vibra tion is minimal. A deeper notch has a higher effect on ma chine resonance suppres sion but increases a p hase delay and may[...]

  • Page 161

    8 - 4 8. SPECIAL ADJUSTMENT FUNCT IONS (2) Parameters Set the operation of adaptive vib ration suppression control in the third and fourth digits of para meter No. 60. 0 0 Pa rame te r N o. 60 Adaptive vibr a tion suppression control selection Choosing "valid" or "held" in adaptive vibration suppression control select ion makes [...]

  • Page 162

    8 - 5 8. SPECIAL ADJUSTMENT FUNCT IONS 8.3 Gain c hanging f unction This function can ch ange the gains. You can change between gain s during rotation and gains during stop or can use an external signal to change gains during operat ion. 8.3.1 Ap plications This function is used when: (1) Yo u want to increase the gains durin g servo lock but de cr[...]

  • Page 163

    8 - 6 8. SPECIAL ADJUSTMENT FUNCT IONS 8.3.3 Par ameters When using the gain changing function, always set " 4 " in parameter No.2 (auto tuning) to choose the manual mode of th e gain adjustment modes . The gain changing function cannot be used in the auto tuning mode. Para meter No. Abbrevi ation Nam e Unit Desc ription 6 PG1 Position co[...]

  • Page 164

    8 - 7 8. SPECIAL ADJUSTMENT FUNCT IONS (1) Para meters No. 6, 34 to 38 These paramet ers are the same as in ordina ry manual adjustment. Gai n changing allows the val ues of GD2, PG2 , VG2 and VIC to be cha nged. (2) R atio of l oad in ertia m oment to s ervo m otor in ertia m oment 2 (GD2B : param eter No. 61) Set th e ratio of loa d inertia momen[...]

  • Page 165

    8 - 8 8. SPECIAL ADJUSTMENT FUNCT IONS 8.3.4 Gai n changing o peration This op eratio n will be descri bed by w ay of se tting e xample s. (1) W hen you c hoose c hanging by exter nal i nput (a) Setting Parameter No. Abbreviat i on Nam e Setting Unit 6 PG1 Position cont rol gain 1 100 rad/s 36 VG1 Speed control gain 1 1000 rad/ s 34 GD2 Ratio of l [...]

  • Page 166

    8 - 9 8. SPECIAL ADJUSTMENT FUNCT IONS (2) W hen you choose chan ging b y droop p ulses (a) Setting Parameter No. Abbrevi at ion Name Setting Unit 6 PG 1 Po sition control gain 1 100 r ad/s 36 VG1 Sp eed con t r ol ga i n 1 1000 rad/s 34 GD2 Rat io of loa d inerti a mom ent to servo motor inertia moment 40 0.1 time s 35 P G2 Position control gain 2[...]

  • Page 167

    8 - 10 8. SPECIAL ADJUSTMENT FUNCT IONS MEMO[...]

  • Page 168

    9 - 1 9. INSPECTION 9. INSPECTION W ARNING Befor e starti ng maint enanc e and/ or inspec tion, m ake sur e that th e charg e lam p is off more th an 10 m inutes af ter po wer-off . Then, co nfirm that the voltage is saf e in the t ester or t he lik e. Oth erwise, you m ay get a n elec tric shoc k. Any pers on who is in volved in inspect ion shoul [...]

  • Page 169

    9 - 2 9. INSPECTION MEMO[...]

  • Page 170

    10 - 1 10. TROUBLESHOOTING 10. TROUBLESHOOTING 10.1 Troub le at start- up CAUTION Exc essive a djustm ent or c hange of param eter se tting m ust not be m ade as it will mak e operat ion inst able. POINT Using the optional servo configuration software, you ca n refer to unrotated servo motor reasons, etc. The following fault s may occur at start-up[...]

  • Page 171

    10 - 2 10. TROUBLESHOOTING No. S tart-up sequence Fault Investigation Possibl e cause Refer to Rotation ripples (speed fluctuations) are la rge at low speed . Make gain adjustment in the follow ing p roc edure : 1. Inc reas e th e auto tunin g respons e level. 2. Repeat acceleration and decele ration s everal ti mes to complete auto tuning. Gain ad[...]

  • Page 172

    10 - 3 10. TROUBLESHOOTING (2) H ow to find the c ause of p ositio n shift Positioning unit (a) Outp ut pulse counter Q P CMX CDV (C) Servo-on (SON), s troke e nd (L SP/LSN) i nput (A) (b) Cu mulative comma nd p ulse s Electronic gear (parame ters No. 3, 4) C Servo motor SM Encoder L Machine (d) Machine sto p p osition M (B) (c) Cumulative f eedbac[...]

  • Page 173

    10 - 4 10. TROUBLESHOOTING 10.1.2 Spee d control m ode No. S tart-up sequence Fault Investigation Poss ible cause Refer to Not i mprov ed if connect ors CN1A, CN1B, CN2 and CN3 are di scon nected . 1. Power supply voltage fault 2. Servo amplifier is faulty. Improv ed when con nectors CN1A and CN1B are discon nect ed. Power supply of CN1 cabling is [...]

  • Page 174

    10 - 5 10. TROUBLESHOOTING 10.1.3 T orque contr ol mode No. S tart-up sequence Fault Investigation Poss ible cause Refer to Not i mprov ed if connect ors CN1A, CN1B, CN2 and CN3 are di scon nected . 1. Power supply voltage fault 2. Servo amplifier is faulty. Improv ed when con nectors CN1A and CN1B are discon nect ed. Power supply of CN1 cabling is[...]

  • Page 175

    10 - 6 10. TROUBLESHOOTING 10.2 W hen alarm or warning has oc curred POINT Configu re up a circuit w hich will d ete ct th e tro uble ( A LM) signal and tu rn off the servo-o n (SON) signal at occurrence of an ala rm. 10.2.1 Alar ms and warning list When a fault occurs during operation, the corresponding alarm or w arni ng is displayed. If any alar[...]

  • Page 176

    10 - 7 10. TROUBLESHOOTING 10.2.2 Rem edies for al arms CAUTION W hen any alar m has oc curred, elim inate its caus e, ensur e safet y, then r eset t he alarm , and rest art op eration. Otherwis e, inj ury ma y occur. If an absolut e posit ion eras e alarm (AL.2 5) occ urred, always m ake hom e pos ition settin g agai n. Other wise, misoper ation m[...]

  • Page 177

    10 - 8 10. TROUBLESHOOTING Display Name Definition Cause Action AL.17 Board erro r 2 CPU/par ts fault AL.19 Memory er ror 3 ROM m emory fa ult Faulty parts in the servo a mplifier Checkin g meth od Alarm (AL.17 or AL.19) occurs if power is switch ed on after CN1A, CN1B and CN3 connectors are disconne cted. Change the servo amplifier. AL.1A Mo tor c[...]

  • Page 178

    10 - 9 10. TROUBLESHOOTING Display Name Definition Cause Action 1. Input co mm and pulse frequen c y exce eded t he p ermiss ible instantaneous sp eed frequency. Set comman d pu lses correctl y . 2. Small acceleration/deceler ation time constant caused oversh oot to be large. Incr ease ac celerat ion /decel erati on tim e constant. 3. Servo system [...]

  • Page 179

    10 - 10 10. TROUBLESHOOTING Display Name Definition Cause Action 1. Pu lse f requ ency of th e com mand pulse is too high . Change the comman d puls e fr equen cy to a proper value. 2. Noise e ntered command pulses. Take action against noise. AL.35 Co mmand puls e freq uen cy error Input pul s e frequ ency of th e command pu lse is too high. 3. Com[...]

  • Page 180

    10 - 11 10. TROUBLESHOOTING Display Name Definition Cause Action 1. Mac hine s truc k somet hing . 1. Rev iew operati on pa ttern. 2. Install limit switch es. 2. Wr ong c onnecti on of serv o mot or. Servo amplifier's output t erminals U, V, W do not ma t ch servo mo tor' s inpu t term ina l s U, V, W . Con nect co rrectl y. 3. Servo syst[...]

  • Page 181

    10 - 12 10. TROUBLESHOOTING Display Name Definition Cause Action 88888 Watc hdog CPU, parts faulty Fault of parts in serv o amplifier Checkin g meth od Alarm (88888) occurs if power is switched on after CN1A, CN1B and CN3 connec tors are disconne cted. Change servo amplifier. 10.2.3 Rem edies for warnings If AL.E6 or AL.E9 occurs, t he servo off st[...]

  • Page 182

    11 - 1 11. OUTLINE DIMENSION DRAWINGS 11. OUTLINE DIMENSION DRA W INGS 11.1 Servo am plifiers (1) MR-J2S-10A to MR-J2S-60A MR- J2S -10A 1 to MR- J2S - 40A1 [Un i t: m m ] 6 ( 0.24) mou nting hole A 70 (2.76) 135 (5.32) TE1 TE2 4(0.16) B 168 (6.61) 7 (0.28) 156 (6.14) 6 (0.24) 6 (0.24) C N 1 A OPEN L1 L2 L3 UV W MITSUBI SHI C N 1 B C N 2 E N C C N 3[...]

  • Page 183

    11 - 2 11. OUTLINE DIMENSION DRAW INGS (2) MR-J2S -70A MR-J2S- 100A C N 1 A OPEN MIT SUBISH I C N 1 B C N 2 E N C C N 3 7 (0.28) C N 1 A OPEN L1 L2 L3 UV W MIT SUBISH I C N 1 B C N 2 E N C C N 3 [Unit: m m] ([Un it: in] ) 70(2.76) 70(2.76) 190(7.48) 22 TE1 TE2 6(0.24) 20 (0.79) Name plate Terminal layout (Terminal cover open) 6 ( 0.24) mounting hol[...]

  • Page 184

    11 - 3 11. OUTLINE DIMENSION DRAW INGS (3) MR-J2S -200A MR-J2S-3 50A MITSUBIS HI MITSUBIS HI 70(2.76) 195(7.68) 90(3.54) 78(3.07) 6 168(6.61) 156(6.14) 6 6 ( 0.24) mounting hole Ter min al la yo ut 3-M 4 sc rew TE1 12- M4 screw [Uni t: mm] ([Uni t: i n ]) TE2 PE te rminal (0.24) (0.24) Servo a mplifier W eight [kg]( [lb]) MR-J2S-200A MR-J2S-350A 2.[...]

  • Page 185

    11 - 4 11. OUTLINE DIMENSION DRAW INGS 11.2 Connectors (1) Servo amplifie r side <Sum itomo 3 M mak e> (a) Soldered type Model Connector : 10120-3000VE Shell kit : 10320-52F0-008 [Uni t: mm] ([Uni t: i n ]) 10. 0 (0.39) Logo, etc. are indicated here. 12.0(0.47) 22.0 ( 0 .8 7 ) 39.0 (1.54) 23.8 (0.94) 14. 0 (0.55) 12. 7(0 .50 ) 33.3 ( 1 .3 1) [...]

  • Page 186

    11 - 5 11. OUTLINE DIMENSION DRAW INGS (2) Co mmun i ca ti on cabl e co nn e cto r <Jap an Avia tion El ectroni cs Indu stry make> C D F A B [Un it: m m] ([Unit: i n ]) Fittin g fixing sc r e w G E (max. diamete r of cable used) Type A 1 B 1 C 0.25 D 1 E F Reference G DE-C1-J6-S6 34.5(1.36) 19(0.75) 24.99(0.98) 33(1.30) 6(0.24) 18(0.71) #4-40[...]

  • Page 187

    11 - 6 11. OUTLINE DIMENSION DRAW INGS MEMO[...]

  • Page 188

    12 - 1 12. CHARACTERISTI CS 12. CHARA CTE RISTICS 12.1 Overl oad protec tion charac teristics An electroni c thermal relay is built in th e servo am plifier to protect the servo motor and servo amplifier from overloads. The operation charact eristics of the electronic thermal relay are shown be low. Overload 1 alarm (AL.50) occurs if overload opera[...]

  • Page 189

    12 - 2 12. CHARA CTERISTICS 12.2 Power suppl y equipment c apacity and generated los s (1) Am ount of heat g enerat ed b y the ser vo am plifier Table 12.1 indicates servo amplifiers' power supply capacities and losses generated under r ated load. For thermal design of an enclosure, use the values in Table 12.1 in consi deration for the worst [...]

  • Page 190

    12 - 3 12. CHARA CTERISTICS (2) H eat diss ipation area for encl osed ser vo ampl ifier The encl osed control box (hereafter called the control box) which will contain the servo amplif ier should be design ed to ensu re that it s temper ature ri se is w ithin 10 at the ambient temperature of 40 . (With a 5 (41 ) safet y margin, the system should op[...]

  • Page 191

    12 - 4 12. CHARA CTERISTICS 12.3 D y nam ic brak e characteris tics When an a larm, emergency stop or power failu re occur s, the dynamic brake is operated to bring the servo motor to a sudden stop. Fig. 12.4 shows the patt ern in which th e servo motor comes to a stop when t he dynamic b rake is operat ed. Use Equati on 12.2 to calculate an approx[...]

  • Page 192

    12 - 5 12. CHARA CTERISTICS 0 0.002 0.004 0.006 0.008 0.0 1 0.012 0.014 0.016 0.018 0.0 2 0 500 1000 1500 20 00 250 0 3000 73 23 43 053 13 Speed [r/min] Time co ns tant [s] Time constant [s] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 50 500 0 100 0 121 201 301 81 S p eed [ r/min ] a. HC-MFS s eries b. HC-SFS1 000r/min s eries 0 0.005 0.01 0.015 [...]

  • Page 193

    12 - 6 12. CHARA CTERISTICS Use the dynamic brake at the l oad inertia moment indicated in the following table. If the load inertia mome nt is higher than this value, the bui lt-in dy namic b rake m ay burn. I f there is a po ssibili ty that the load inertia moment may exceed the value, contact Mitsubis hi. Servo amplifier Load inert i a m oment ra[...]

  • Page 194

    13 - 1 13. OPTIONS AND AU XILIARY EQUIPMENT 13. OPTIONS AND AUX ILIARY EQUIPM ENT W ARNING Before co nnectin g any option or auxiliar y equi pment, m ake s ure that t he ch arge la mp is off mor e th an 10 minu tes a fter pow er-o ff, then confir m the volt age with a tester or the like. Oth erwise, you m ay get a n electr ic shoc k. CAUTION Use t [...]

  • Page 195

    13 - 2 13. OPTIONS AND AU X I LIARY EQU IPMENT (b) To make selection according to regenera ti ve energy Use the following method when regeneration occurs continuousl y in vertical motion applic ati ons or when it is desired to make an in-depth selection of the regenerat ive brake opti on: a. Regenerative energy calculati on Use the following tabl e[...]

  • Page 196

    13 - 3 13. OPTIONS AND AU X I LIARY EQU IPMENT Subtract the capacitor charging from the result of multiply ing the sum total of regenera tive energies by the inverse effi ciency to calculat e the energy consumed by the regenerati ve brake opti on. ER [J] Es Ec Calculat e the power consumption of the regenerative brake option on the basis of single-[...]

  • Page 197

    13 - 4 13. OPTIONS AND AU X I LIARY EQU IPMENT (4) Outline drawing (a) MR-RB032 MR-R B12 LA 5 (0.20) LB TE1 6 (0.23) 6 (0.23) 156 (6.14) 168 (6.61) 144 (5.67) 12 (0.47) 6 (0.23) 12 (0.47) 20 (0.79) LD 1.6 (0.06) LC G3 G4 P C [Uni t: mm (in)] 6 (0.24) mounting h ole MR-RB Variable dim ensions Weight Regenerative brake option Regenerative power[W] Re[...]

  • Page 198

    13 - 5 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.1.2 Cabl es and conn ectors (1) Cable make-up The followi ng cables a re used for connection with the servo motor and other models. HC-SFS HC-RFS HC-UFS 2000r/min HC-KFS HC-MFS HC-UFS 3000 r/min CN1A CN1B CN2 CN3 1) 2) 3) 4) 5) 7) 8) 6) 11) 10) 10) 11) 12) 13) 14) 15) 16) 17) Note: Those i ndicated [...]

  • Page 199

    13 - 6 13. OPTIONS AND AU X I LIARY EQU IPMENT No. Product Model Description Applic a tion 1) Standard encoder cable MR-JCCBL M-L Refer to (2) in this section. Connector: 10120-3000VE Shell kit: 10320-52F 0-008 (3M or eq uivale nt) Housing : 1-172161-9 Connector pin : 170359-1 (AMP or equival ent) Standard flexing life IP20 2) Long fl exing life en[...]

  • Page 200

    13 - 7 13. OPTIONS AND AU X I LIARY EQU IPMENT No. Product Model Description A pplication 9) Control sig nal connecto r set MR-J2CN 1 Connector: 10120-3000VE Shell kit: 10320-52F 0-008 (3M or eq uivale nt) Qty: 2 each Connector: HIF 3BA-20D-2.54R (Hiro se Electric) Connector: 10120-6000EL Shell kit: 10320-3210-000 (3M or eq uivale nt) 10) Junction [...]

  • Page 201

    13 - 8 13. OPTIONS AND AU X I LIARY EQU IPMENT (2) Encode r cable CAUTION If you hav e fabric ated t he encod er cab le, conn ect it correct ly. Other wise, m isoperati on or ex plosion m ay occ ur. POINT The encoder cabl e is not oil resistant. Refer to Secti on 12.4 for the fl exing life of t he encoder cable. Generally us e the encoder cab le av[...]

  • Page 202

    13 - 9 13. OPTIONS AND AU X I LIARY EQU IPMENT MR-JCCBL2M-L MR-JCCBL5M-L MR-JCCBL2M-H MR-JCCBL5M-H 19 11 20 12 18 2 7 17 9 1 7 8 1 2 3 9 P5 LG P5 LG P5 LG MR MRR BT LG SD MD MDR 6 16 4 5 MR-JC CBL10M-L to MR-JC CBL30M-L 19 11 20 12 18 2 7 17 9 1 7 8 1 2 3 9 P5 LG P5 LG P5 LG MR MRR BT LG SD MD MDR 6 16 4 5 MR-JC CBL10M-H to MR-JC CBL50M-H 19 11 20 [...]

  • Page 203

    13 - 10 13. OPTIONS AND AU X I LIARY EQU IPMENT (b) MR-JHSCBL M- L MR-JH SCBL M-H MR-ENC BL M- H These encoder cables are used with the HC-SFS HC-RFS HC-UFS 2000r/m in serie s servo moto rs. 1) Model explanation L H 2 5 10 20 30 2 5 10 20 30 Symbol Specifications Standard flexing life Long flexing life Symbol Cable length [m] Model: MR-JHSCB L M- 4[...]

  • Page 204

    13 - 11 13. OPTIONS AND AU X I LIARY EQU IPMENT MR-JHSCBL2M-L MR-JHSCBL5M-L MR-JHSCBL2M-H MR-JHSCBL5M-H MR-ENCBL2M-H MR-ENCBL5M-H MR-JHSCBL10M-L to MR-JHSCBL30M-L P5 LG P5 LG P5 LG MR MRR BAT LG SD MR-JHSCBL10M-H to MR-JHSCBL50M-H MR-ENCBL10M-H to MR-ENCBL50M-H Servo am plifier side Encode r side P5 LG P5 LG MR MRR P5 LG BAT LG SD 19 11 20 12 7 17 [...]

  • Page 205

    13 - 12 13. OPTIONS AND AU X I LIARY EQU IPMENT (3) Co mmun i ca ti on cabl e POINT This cab le may not be used wit h some personal comput ers. After fully examining t he signals of th e RS-2 32C connector, refer to thi s section and fabricate the cable. Select the communication cabl e according to t he shape of the RS-232C connector of the persona[...]

  • Page 206

    13 - 13 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.1.3 Junc tion term inal block (MR-T B20) POINT When usin g the junction termina l block, you cannot use SG of CN1A-20 and CN1B-20 . Use SG of CN1 A-4 and CN1B- 4. (1) H ow to use the junc tion ter mina l block Always use the juncti on terminal bl ock (MR-TB20 ) with the junction terminal bl ock cab[...]

  • Page 207

    13 - 14 13. OPTIONS AND AU X I LIARY EQU IPMENT (4) Ju nction t erminal block c able (M R-J2TBL M) Model : MR-J 2TBL M Cable l ength[m ] Symbol 05 1 0.5 1 Junction terminal block side connector (Hir ose Electric) HIF3BA-20D-2.54R (connector) Servo amplifier si de (CN1A CN1B) connect or (3M) 10 B1 0A 1 11 B2 1A 2 12 B3 2A 3 13 B4 3A 4 14 B5 4A 5 15 [...]

  • Page 208

    13 - 15 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.1.4 Main tenance junc tion card ( MR-J2CN3T M) (1) Usage The mai ntenance junction card (MR-J2CN3TM) is designed for use when a per s onal computer and analog monit or outputs are used at th e same time. Communication cable Maintenance junct ion card (MR-J2CN3TM) CN3A CN3B CN3C A1 A2 A3 A4 B4 B3 B2[...]

  • Page 209

    13 - 16 13. OPTIONS AND AU X I LIARY EQU IPMENT (4) Bus cable (MR-J2HBUS M) 10120-6000EL (connector) 10320-3210-000 (shell ki t) LG LG RD TD LG LG EMG BAT SD MR-J2HBUS0 5M MR-J2H BUS1M MR-J2H BUS5M 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10 20 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10 20 10120-6000EL (connector) 10320-3210-000 (shell kit[...]

  • Page 210

    13 - 17 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.1.6 Ser vo configur ations sof tware The servo configuration software uses the communication function of the servo amplifier to perform parameter setting changes, graph di splay, test operation, e tc. on a personal compu ter. (1) S pecific ations Item (Note 1) Descript ion Communication signal Conf[...]

  • Page 211

    13 - 18 13. OPTIONS AND AU X I LIARY EQU IPMENT (b) Configuration diagram 1) Wh en using RS-23 2C CN3 CN2 Personal computer To RS-232C connector Communication cable Servo amplifi er Servo mo t or 2) Wh en using RS-42 2 You can make multidrop connection of up to 32 axes. Personal computer CN3 CN2 Servo amplifier Servo mo t o r Servo mo t o r Servo m[...]

  • Page 212

    13 - 19 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.2 Auxil iar y equipm ent Alway s use the d evice s indic ate d in th is sec tion or equ iva lent. To comply wi th the EN Stan dard or UL/C- UL Standard, use the products which conform to the corresponding standard. 13.2.1 Recom mended wires (1) W ires for p ower supply wiring The followin g diagram[...]

  • Page 213

    13 - 20 13. OPTIONS AND AU X I LIARY EQU IPMENT Table 13. 2 Recom mended cr imping term inals Servo am plifier side crim ping terminals (A MP) Symbol Crim ping terminal Applicabl e tool a 32959 47387 b 32968 59239 (2) W ires for ca b les When f abricating a cable , use th e wire mo dels g iven in the follo wing ta ble or e quivalen t: Table 13. 3 W[...]

  • Page 214

    13 - 21 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.2.2 No-f use break ers, fus es, magnetic c ontactors Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse instea d of the no-fuse breaker, use the one having the speci ficati ons given in this s ection. Fuse Servo amplifier No-fuse break er Class Cur[...]

  • Page 215

    13 - 22 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.2.4 Re lays The followi ng relays should be used with the int erfaces: Interface Selection exam pl e Relay used especially for switching on-off analog input command an d inpu t comm and (interface DI-1) signals To preven t de fective con t act s , use a relay for smal l s ign al (twin contacts). (E[...]

  • Page 216

    13 - 23 13. OPTIONS AND AU X I LIARY EQU IPMENT (b) Redu ction te chnique s for ex ternal noi ses tha t cause the servo amplifier to malfu nction If there a re noise s ources (such as a magnetic contactor, an electromagneti c brake, and many relays which make a large amount of noise) near the servo amplifier and the servo amplifier may malfunction,[...]

  • Page 217

    13 - 24 13. OPTIONS AND AU X I LIARY EQU IPMENT Noise transm issi on rout e Suppression t echniques 1) 2) 3) When measuring instruments, receiv ers, s ensors, etc. which handle weak signals and may malfunction due to n oise and/or their signal cables are containe d in a control box together with the servo amplifier o r run near the s ervo amplifier[...]

  • Page 218

    13 - 25 13. OPTIONS AND AU X I LIARY EQU IPMENT (b) Surge suppressor The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic brake or the li ke near the servo ampli fi er is shown below. Us e this product or equival ent. MS Surge suppressor Relay This distance should be short (within 20cm(0.79 in.)). Surge sup[...]

  • Page 219

    13 - 26 13. OPTIONS AND AU X I LIARY EQU IPMENT Outline drawing Earth plate Clamp section diagram (Not e )M 4 s cr ew 11(0.43) 3 (0.1 2) 6 (0. 2 4) C A 6 22(0.87) 17.5(0.69) 35(1.38) 35 (1.38) L or l e ss 10(0.39) 30(1.18) 7 (0. 2 8) 24 0 0.2 Note: Screw hole for grounding. Connec t it to the earth plate o f the control box. (0.24) 24 0.3 0 (0.940)[...]

  • Page 220

    13 - 27 13. OPTIONS AND AU X I LIARY EQU IPMENT (d) Line noise filter (FR-BLF, FR-BSF01) This filter is effective in suppressing noises radiat ed from the power supply side and output side of the servo amplifier and als o in suppressing high-frequency leakage current (zero-phase current) especi ally wi thin 0.5 MHz to 5MHz ban d. Connection di agra[...]

  • Page 221

    13 - 28 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.2.7 Leak age current breaker (1) Selecti on method High-frequency chopper currents controlled b y pulse width modulation flow in the AC servo circuits. Leakage currents containing harmonic contents are larger than those of the motor which is run with a commercial power supp ly. Select a leakage cur[...]

  • Page 222

    13 - 29 13. OPTIONS AND AU X I LIARY EQU IPMENT (2) S electio n exam ple Indicated below is an example of selecting a l eakage current break er under the followi ng conditions: SM Servo amplifier MR-J2 S-60A Servo motor HC-MFS73 Ig1 Ig 2 Iga Ig m NV 2mm 2 5m 2mm 2 5m Use a leakage curren t breaker generally available. Find the terms of Equation (13[...]

  • Page 223

    13 - 30 13. OPTIONS AND AU X I LIARY EQU IPMENT 13.2.8 EMC f ilter For compliance with the EMC Directive of the EN Standard, it is recommended to use the following filter: (1) Co mbi n at io n wi th the se r vo a mpl i fie r Recommended f ilter Servo a mplifier (Note) Model Leakage c urrent [mA] W eight [kg] MR-J2S-10A to MR-J2S-100A MR-J2S-10A1 to[...]

  • Page 224

    14 - 1 14. COMMUNICATION FUNCTI ONS 14. COMMUNICATION FUNCT IONS This servo amplifi er has the RS-422 and RS-232C serial communication functions. These functions can be used to perform servo operation, parameter changing, monitor function, etc. However, the RS-42 2 and RS-232C communication functions cannot be used t ogether. Select b etween RS- 42[...]

  • Page 225

    14 - 2 14. COMMUNICATION FUNCTIONS 14.1.2 R S-232C conf iguration (1) Outline A singl e axis of servo amplifi er is operat ed. CHARGE MITSUBISHI RS-232C Controller such a s persona l computer Servo a mplifier To CN3 (2) Ca bl e co nn e cti o n di ag ra m Wire as shown below. The communication cable for connection with the personal computer (MR- CPC[...]

  • Page 226

    14 - 3 14. COMMUNICATION FUNCTIONS 14.2 Comm unication specif ications 14.2.1 Com municatio n overvie w This servo amplifier is designed t o send a reply on receipt of an instruction. The device wh ich gives this instruc tion (e.g . person al compu ter) is ca lled a m aster station an d the de vice wh ich se nds a r eply in response t o the inst ru[...]

  • Page 227

    14 - 4 14. COMMUNICATION FUNCTIONS 14.2.2 Par ameter s etting When th e RS-422/RS-23 2C communication function is used to operate the servo, set the communicati on specif ication s of the servo ampl ifier in the corre sponding parameter s. After setti ng the values of these parameters, they are made valid by switchin g power off once, then on again[...]

  • Page 228

    14 - 5 14. COMMUNICATION FUNCTIONS 14.3 Protoc ol POINT Whether st ation nu mber setting w ill be made o r not must be selected if the RS-232C com municatio n function is used. Note that choo sing "no station nu mbers" in par ameter No. 53 w ill make the co mmunication protocol free o f station numbers as in the MR -J2 -A servo ampli fier[...]

  • Page 229

    14 - 6 14. COMMUNICATION FUNCTIONS (2) T ransmis sion of d ata requ est from the co ntroller t o the s ervo S O H S T X E T X S T X E T X Controller side (Master statio n) Servo side (Slave station) 10 frames Command Data No. Check sum Error code Data* Check sum 6 frames (data ) Station number or group Station number or group (3) R ecover y of com [...]

  • Page 230

    14 - 7 14. COMMUNICATION FUNCTIONS 14.4 Charact er codes (1) C ontrol co des Code name H exadecimal (ASCII code) Description Person al com puter termin al key oper atio n (General) SOH STX ETX EOT 01H 02H 03H 04H start of he ad start of tex t end of t ext end of tran smission ctrl A ctrl B ctrl C ctrl D (2) Codes for data JIS8 un it codes are u sed[...]

  • Page 231

    14 - 8 14. COMMUNICATION FUNCTIONS 14.5 Error codes Error codes are u sed in the following cases and an error code of single-code leng th is transmitted. On receipt of data from t he master station, the sla ve station sends the error code corresponding to that data to the master statio n. The error code sent in upper case indicates that the servo i[...]

  • Page 232

    14 - 9 14. COMMUNICATION FUNCTIONS 14.7 Tim e-out operat ion The master stat ion transmits EOT when the slave stati on does not start reply operation (STX is not receive d) 300[ms] af ter the master station ha s ended communica tion op eration. 100[ms] after th at, th e maste r statio n retran smit s the me ssage. Ti me-ou t occurs if the slave sta[...]

  • Page 233

    14 - 10 14. COMMUNICATION FUNCTIONS 14.9 Initia liza tion After th e slave st ation i s swi tched on , it c annot r eply to comm unica tion un til the intern al ini tializ ation processing terminates. Hence, at power-on, ordinary communication should be started after: (1) 1s or more time has elapsed a fter the slave stati on is switched on; and (2)[...]

  • Page 234

    14 - 11 14. COMMUNICATION FUNCTIONS 14.11 Comm and and dat a No. list 14.11.1 R ead comm ands (1) Sta tus dis pla y (Comm and [0][ 1]) Command Data No. Description Display item Frame length [0][1] [8][0] cumulative feedback pulses 12 [0][1] [8][1] servo motor speed 12 [0][1] [8][2] droop pulses 12 [0][1] [8][3] cumulative command pulses 12 [0][1] [[...]

  • Page 235

    14 - 12 14. COMMUNICATION FUNCTIONS (5) C urrent al arm (C ommand [0 ][2] [3][ 5]) Command Data No. Descripti on Frame length [0][2] [0][0] Current alarm n umber 4 Command Data No. Description Display item Frame length [3][5] [8][0] cumulative feedback pulses 12 [3][5] [8][1] se rvo motor speed 12 [3][5] [8][2] droop pulses 12 [3][5] [8][3] cumulat[...]

  • Page 236

    14 - 13 14. COMMUNICATION FUNCTIONS (5) Op eration m ode se lection (Com mand [8][ B]) Command Data No. Description Setting range Frame length [8][B] [0][0] Operation mo de changing 0000: Exit from t est oper ation mode 0001: Jog operation 0002: Positioning operation 0003: Motor-less operat ion 0004: DO forced out put (output signal forc ed output)[...]

  • Page 237

    14 - 14 14. COMMUNICATION FUNCTIONS 14.12 Detai led explan ations of com mands 14.12.1 D ata process ing When th e maste r statio n tran smits a com mand data No. or a co mmand data N o . d ata to a slave station, the servo amplifier returns a reply or data according to the purpose. When numerical values are represented in these send data and recei[...]

  • Page 238

    14 - 15 14. COMMUNICATION FUNCTIONS (2) Wr iting the proces sed data When th e data to be w ritten is han dled as decim al, th e deci mal poin t po sition must be specif ied. If it i s not spec ified , the d ata cann o t be w ri tte n. Wh en the dat a is han dle d a s hex adec ima l, sp ecify "0" a s the decimal point position. The data t[...]

  • Page 239

    14 - 16 14. COMMUNICATION FUNCTIONS 14.12.2 Stat us dis pla y (1) Stat us displa y data read When the master stat ion transmits the dat a No. (refer to the following table for assi gnment) to the slave station, the slave sta tion sends back t he data val ue and data processing information. 1) Transm issio n Trans mit comman d [0][1] a nd the data N[...]

  • Page 240

    14 - 17 14. COMMUNICATION FUNCTIONS 14.12.3 Param eter (1) Parameter read Read the parame ter setting . 1) Transm issio n Transmit command [ 0][5] and the data No. corresponding to the par ameter No. The data No. is expressed in hexadeci mal equivalent of t he data No. value corresponds to the parameter nu mber. Comm and Data No. [0][5] [0][0] to [[...]

  • Page 241

    14 - 18 14. COMMUNICATION FUNCTIONS (2) Parameter write POINT The number of parameter write times is restricted to 1,000,0 00 times. Writ e t he parameter s etting. Write the val ue within the s etting range. Refer to Secti on 5.1 for the setting range. Trans mit com mand [ 8][4], the d ata No ., and th e set data. The data No. is expressed in hexa[...]

  • Page 242

    14 - 19 14. COMMUNICATION FUNCTIONS 14.12.4 Ex ternal I/O pin statuses (D IO diagn osis) (1) Ex ternal input p in status read Read the ON/OFF stat us es of the external i nput pins. (a) Transmission Transmit command [1][2] and data No. [4][0]. Comm and Data No. [1][2] [4][0] (b) Reply The ON/ OFF status es of the input pins are s ent back. b31 b0 0[...]

  • Page 243

    14 - 20 14. COMMUNICATION FUNCTIONS 14.12.5 D isable/enabl e of externa l I/O signals (DIO) Inputs can b e disabled i ndependently of the ext ernal I/O signal ON/OFF. When inputs are disabled, the input signals a re recognized as follows. Among the external i nput signals, EMG, LSP and LSN cannot be disabled. Signal St atus Exte rnal inp ut si gn a[...]

  • Page 244

    14 - 21 14. COMMUNICATION FUNCTIONS 14.12.6 Ex ternal inp ut signal O N/OFF (tes t operatio n) Each input signal can be turned on/off for test operation. Turn off the external input signals. Send command [9] [2], data No. [0] [0] and da ta. Comm and Data No. Set data [9][2] [0][0] See below b31 b0 0: OFF 1: ON b1 Comma nd of ea ch b it is tra nsmit[...]

  • Page 245

    14 - 22 14. COMMUNICATION FUNCTIONS 14.12.7 T est operation m ode (1) I nstructio ns for test o peratio n mode The test operati on mode mu st be executed in the following procedure. If com munication is in terrupted for long er than 0. 5s duri ng tes t operatio n, the servo am plifier cause s the mo tor to be decele rated to a stop a nd servo-locke[...]

  • Page 246

    14 - 23 14. COMMUNICATION FUNCTIONS (2) Jo g oper ation Transmit the following commun ication commands: (a) Setting of jog operat ion data Item Comm and Data No. Dat a Speed [A][0] [1][0] Write the speed [r/min] in hexadecimal. Accelerati on/decelerati on time constant [A][ 0] [1] [1] Write th e acceleration/dec eleration time constant [ms] in hexa[...]

  • Page 247

    14 - 24 14. COMMUNICATION FUNCTIONS 14.12.8 Ou tput signal pin ON/OFF (DO forc ed output) In the test operation mode, the output signal pins can be turned on/off independentl y of the servo status. Using command [ 9][0], d isable the outp ut sig nals in advanc e. (1) C hoosing DO force d outpu t in tes t oper ation m ode Transmit command [8][B] da [...]

  • Page 248

    14 - 25 14. COMMUNICATION FUNCTIONS 14.12.9 Alar m history (1) Alarm No. read Read the alarm No. which occurred in the p ast. The alarm numbers and occurrence times of No. 0 (la st alarm) to No. 5 (sixth alarm in the past) are re ad. (a) Transmission Send command [3][3] and data No. [1][0] to [1][5]. Refer to Section 14.11.1. (b) Reply The alarm No[...]

  • Page 249

    14 - 26 14. COMMUNICATION FUNCTIONS 14.12.10 Cur rent alarm (1) Current alarm read Read the alarm No. which is occurring current ly. (a) Transmission Send command [0][2] and data No. [0][0]. Comm and Data No. [0][2] [0][0] (b) Reply The slave station sends back the alarm curren tly occurring. 00 A la rm No. is tra nsfer red in decim a l. For examp [...]

  • Page 250

    14 - 27 14. COMMUNICATION FUNCTIONS 14.12.11 O ther comm ands (1) S ervo m otor end puls e unit abs olut e posit ion Read the absol ute positi on i n the servo motor end pulse unit. Note that overflow will occur in the positi on of 16384 or more revolutions from the home position. (a) Transmission Send command [0][2] and data No. [9][0]. Comm and D[...]

  • Page 251

    14 - 28 14. COMMUNICATION FUNCTIONS MEMO[...]

  • Page 252

    15 - 1 15. ABSOLUTE POS ITION DETECTION SYSTEM 15. ABSOLU TE POSITION DE TECTION SYSTEM 15.1 Outl ine 15.1.1 Fea tures For normal operation, as shown below, the encoder consists of a detector designed to detect a position within one revoluti on and a cumulative revoluti on counter designed to detect the number of revolutions. The abs olute posi tio[...]

  • Page 253

    15 - 2 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.2 Specif ic ati ons (1) Spec ificat ion list Item Descripti on System Electronic bat tery bac kup system Battery 1 pi ece of lithium ba tte ry ( primary ba tte ry, nominal 3.6V ) Type: MR-BAT or A6BAT Maxim um revoluti o n range Home pos ition 3276 7 rev. (Note 1) Max imum speed at power fa ilure [...]

  • Page 254

    15 - 3 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.3 Batter y inst al lat ion proc ed ure W ARNING Bef ore star ting batt er y insta llation procedur e, m ake sure th at the ch arge lamp is off more t h an 10 mi nu te s aft e r pow e r -o ff. Then , con fi r m th at th e v ol ta ge is sa fe in th e tester or the like. Oth erwise, you m ay get a n [...]

  • Page 255

    15 - 4 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.4 Standar d connec tion diagram CR SG RA2 CN1B-3 CN1B-13 COM CN1B-16 LSP CN1B-17 LSN CN1B-7 TL CN1B-14 RES CN1B-10 SG CN1B-5 SON CN1B-15 EMG CN1B-8 ABSM CN1B-9 ABSR CN1B-4 DO1 CN1B-19 ZSP CN1B-6 TLC VDD SG CN1A-10 CN1B-3 VDD CN1A-19 RD CN1A-4 P15R CN1A-14 OP CN1A-8 CN1A-20 CN1A-3 PP CN1A-13 PG CN1[...]

  • Page 256

    15 - 5 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.5 Signal ex pla nat ion When the absolute posit ion data is transferred, the signals of connect or CN1 change as de scrib ed i n th is section. They return to the previous status on complet ion of data transfer. The other signals are as describe d in Sec tion 3 .3.2. For the I/O in terfaces (symbo[...]

  • Page 257

    15 - 6 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.6 Startup pr ocedur e (1) Battery in stalla tion. Refer to Sectio n 15.3 install ation of absolu te po sition b ackup battery . (2) Paramete r setting Set "1 "in parameter No. 1 of the servo amplifier and switch power off, then on. (3) R esetting of abs olute positi on eras e alarm (AL.2[...]

  • Page 258

    15 - 7 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.7 Absolut e pos ition data tr ans f er protoco l POINT After swit ching on the ABS tr a nsfer mode (ABSM), t urn on the servo-on signal (SON). When the ABS t ransfer mode is off, t urning on the servo-on signal (SON) does not swit ch on the b ase circuit. 15.7.1 Data tr ansfer procedure Each time [...]

  • Page 259

    15 - 8 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.7.2 T ransfer m ethod The sequence in which the bas e circuit is t urned ON (servo-on) when it is in the OFF state due to the servo-on (SON) signal goi ng OFF, an emergency stop, or alarm, is explai ned below. In the absol ute position detection syst em, every time the servo-on (S ON) signal is tu[...]

  • Page 260

    15 - 9 15. ABSOLUTE POSITION D ETEC TION SY STEM 1) The ready signal (R D) is turned ON when the ABS transfer mode signal (ABS M) is turned OFF after transm ission of the ABS da ta. While the re ady sig nal (RD ) is O N, the ABS tr ansfer m ode signal ( ABSM) inpu t is not accep ted. 2) Even if the servo-on (SON) signal is turned ON before the ABS [...]

  • Page 261

    15 - 10 15. ABSOLUTE POSITION D ETEC TION SY STEM (b) Detail ed description of abs ol ute position data trans fer OFF ON OFF ON OFF ON OFF ON OFF ON 3) 4) 5) 7) (Note) 1) 2) 6) Servo-on (p rog ramm abl e co ntro ller ) Servo-on (SON) ABS transfer mode (ABSM) ABS request (ABSR) Send data ready (TLC) Transmission (ABS) dat a Note: If t he servo-on (S[...]

  • Page 262

    15 - 11 15. ABSOLUTE POSITION D ETEC TION SY STEM (c) Checksum The check sum is the code which is used by the programmable controller to check for errors in the received ABS data. The 6-bit check sum is t ransmitt ed fol lowing the 32 -bit A BS dat a. At the programmable controll er, calculat e the sum of the received ABS data using t he ladder pro[...]

  • Page 263

    15 - 12 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) Transmission erro r (a) Time-out warning(AL.E5) In the ABS transfer mode, the time-out processing shown b elow is executed at the servo. If a time- out error occurs, an A BS time-out warning (AL.E5) is output. The ABS time-out warning (AL.E5) is cleared when the ABS transfer mode (AB SM) changes[...]

  • Page 264

    15 - 13 15. ABSOLUTE POSITION D ETEC TION SY STEM 3) ABS transfer mode finish-time time-out check If the ABS t ransfer mode signa l is no t turne d OFF w ithin 5s af ter the last re ady to send signa l (19th signal for ABS data transmis si on) is t urned ON, it is regarded as the transmiss ion error and the ABS time-out warning (AL.E5) is output. O[...]

  • Page 265

    15 - 14 15. ABSOLUTE POSITION D ETEC TION SY STEM (3) At the time of alarm reset If an al arm occur s, turn OF F the servo-o n (SON) s ignal by detectin g the alarm ou tput (A LM). If an al arm has o ccurred, the ABS transf er mode signal (ABSM) c annot be accepte d. In the reset state , the ABS tr ansfer mode sign al (ABSM) can be inpu t. OFF ON O[...]

  • Page 266

    15 - 15 15. ABSOLUTE POSITION D ETEC TION SY STEM (4) At t he tim e of em ergency stop r eset (a) If the power is switched ON in the emergency stop state The emergency stop state can be reset while th e ABS data is being transferred. If the emergency stop state is reset whi le the ABS data is transm itted, the bas e circuit is turned ON 80[ ms] af [...]

  • Page 267

    15 - 16 15. ABSOLUTE POSITION D ETEC TION SY STEM (b) If emergency stop is activated during servo-on The ABS transfer mode si gnal (ABSM) is permissibl e while in the emergency stop stat e. In this case, the bas e circuit and the ready signal (R D) are turned ON after the emergency stop state is reset. OFF ON OFF ON OFF ON OFF ON OFF ON 80[ms] OFF [...]

  • Page 268

    15 - 17 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.7.3 Hom e positio n setting (1) D og t y pe hom e posit ion re turn Preset a home position return creep speed at which the machine will not be given impact. On detection of a zer o pul se, the h ome po sition sett ing sign al (CR) is tur ned from off to on. A t the s ame tim e, the servo amplifie[...]

  • Page 269

    15 - 18 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) Data set type home position return Move the machine to the positi on where the home position is to b e set by performing manual operati on such as jog operati on to turn the mot or shaft more tha n one revolution. W hen the home posi tion setti ng signal (CR) is on for longer than 20 ms, the sto[...]

  • Page 270

    15 - 19 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.7.4 Use of servo m otor with elec tromagnetic brake The timing charts at power on/off and servo-on (SON) on/off are given below. Prese t " 1 " in parame ter N o. 1 to make the ele ctromag netic brake interlo ck sign al (MB R) usa ble. When the ABS transfer mode is ON, the elect romagnet[...]

  • Page 271

    15 - 20 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.7.5 How to process the a bsolute position data at detection of strok e end The servo amplifier stops the acceptance of the command pulse when stroke end (LSP LSN) i s detec ted, clears the droop pulses to 0 at the same time, and stops t he servo motor rapidly. At this time, the programmabl e cont[...]

  • Page 272

    15 - 21 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.8 Exam ples of use 15.8.1 M ELSEC-A1S (A 1SD71) (1) Instruction s The absol ute coordinat e system (programmable control ler coordinat e system) of the A1SD71 (AD71) only covers the range in which the address increas es (positi ve coordinate val ues ) on moving away from the machine home position[...]

  • Page 273

    15 - 22 15. ABSOLUTE POSITION D ETEC TION SY STEM If the addres s of the mach ine hom e posi tion i s chang ed to an y coo rdinate value other than "0", the programm able co ntroller coordin ate sy stem wi ll be as illustr ated be low. The power should be turned ON/OFF in the range in which the address increases on moving away from the ho[...]

  • Page 274

    15 - 23 15. ABSOLUTE POSITION D ETEC TION SY STEM (d) Slot arrangement The sequence programs presented in this section show I/O numbers (X, Y) assuming the arrangement of modules on the main bas e unit is as illustrat ed below. A 1SD71 is mount ed at I/O slots 0 and 1, a 16-po int inpu t modu le at slo t 2, and 16-po int outp ut modu le at slo t 3.[...]

  • Page 275

    15 - 24 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) Connec tion diagram PULSE- R PULSE- F PGO DOG RDY 16B 16A 15B 15A 9B 9A 5B 6B 0 1 2 3 4 5 7 COM 8 9 A B C D E F COM NC NC 6 0 1 2 3 4 5 7 6 8 9 A B A1SD71-S2 A1SY4 0 A1SX4 0 A1SC PU A1S62P INPUT AC100/ 200 COM1 COM2 (Not e 3) (Note 2) RA2 12A CLEAR SD NP PP SG RD P15R CR SG 19 4 8 10 20 3 2 Plat[...]

  • Page 276

    15 - 25 15. ABSOLUTE POSITION D ETEC TION SY STEM (3) Seq uence program exam ple (a) Conditions This sampl e program is an ABS s equence program example for a single axis (X axis). To transmit the ABS data usi ng the OFF-to-ON change of the servo-on signal as the trigger. 1) When the servo-ON signal and the GND of the power suppl y are shorted, the[...]

  • Page 277

    15 - 26 15. ABSOLUTE POSITION D ETEC TION SY STEM (c) ABS data transfer program for X a xis This seq uence program example assumes the followi ng conditions: Parame ters o f the A1 SD71-S 2 (AD7 1) po sitioni ng modu le 1) Un it sett in g : 3 pul se (PLS) 2) Trave l per pu lse : 1 1 pulse To select the unit other than the pulse, conversi on into th[...]

  • Page 278

    15 - 27 15. ABSOLUTE POSITION D ETEC TION SY STEM M8 M12 PLS M12 X34 M9 Y43 X35 Y43 X33 M0 D0 K16 MOV M0 Y41 C1 1 1 2 2 C2 RST M9 M3 RST M8 RST Y48 D1 K3 MOV D2 K0 MOV D5 K0 MOV D9 K0 DMOV A0 K0 DMOV Y4B RST C0 RST C1 RST Y41 Settin g retr y fl ag Resetting retry counter ABS data transmi ssion retry con trol Servo-on request Retry flag reset reques[...]

  • Page 279

    15 - 28 15. ABSOLUTE POSITION D ETEC TION SY STEM C0 C1 Y41 D3 A0 DMOVP K1 D8 K7872 H0001 FROMP M13 PLS M13 M4 C0 C1 2 2 3 3 A0 K0 MOVP D8 H0004 WAND A1 H8000 WAND D4 NEG D4 K1 D3 NEG D4 K1 D5 K1X30 MOV D5 H0003 WAND A0 D5 WOR K2 FOR M5 PLS D1 D8 K4 K0 D3 Detecting absolute position polarity and A1SD71 rotating dir e ction Reversing pol arity of ab[...]

  • Page 280

    15 - 29 15. ABSOLUTE POSITION D ETEC TION SY STEM M4 C0 D5 K1X30 MOV K2 DROR D2 D2 D5 C0 C1 C2 M6 M5 Y41 X32 M7 Y42 X32 Y42 X32 T200 3 3 4 4 D5 H0003 WAND A0 D5 WOR D0 M6 PLS K10 RORP A0 H003F WAND M1 M2 D6 A0 MOV Y4A Y42 RST M7 PLS Y42 SET T200 K1 M4 D2 A0 D2 A0 Reading ABS data 32 bits (2 bits 16 tim es) Detecting ABS data check sum error ABS req[...]

  • Page 281

    15 - 30 15. ABSOLUTE POSITION D ETEC TION SY STEM M1 K1 D9 K7912 H0001 DFROP M1 Y4B D3 D3 D*P Y4B SET K1 D3 K41 H0001 DTOP Y49 X36 Y41 T0 Y41 Y42 Y41 X32 T0 T1 T3 4 4 D3 D9 D3 D P M3 SET Y41 RST K50 T1 K10 T3 K10 Y49 (Note) 5 5 K0 DD 3 Restoring absolute position data Detecti n g AB S coordinate error Wri tin g AB S dat a to A1SD7 1 ABS co mm unic [...]

  • Page 282

    15 - 31 15. ABSOLUTE POSITION D ETEC TION SY STEM M2 M10 C2 M11 T2 M9039 END 5 5 M10 PLS M11 SET C2 D7 T2 K1 M11 RST D100 A0 DMOV ABS tran sf e r ret ry co n tr o l ABS transf er retry st art pul s e Setting retry flag Retr y cou n te r Retry wait time r (100ms) Resetting retry f lag Saving received shift data Check sum NG Retry start pulse Retry c[...]

  • Page 283

    15 - 32 15. ABSOLUTE POSITION D ETEC TION SY STEM (d) X-axis control program This precludes executi on of the X-axis st art program while M3 (ready to send the ABS data) is OFF. When M3 (ready t o send the ABS data) is turned ON, th e X-axis start command executes the X -axis start prog ram. X-axis start program Positioning mode X-axis start comman[...]

  • Page 284

    15 - 33 15. ABSOLUTE POSITION D ETEC TION SY STEM (g) Electromagnetic brake output During ABS data tr ansfer (for several seconds af ter the servo-on signal is turned on), the servo motor must be at a s top. Set "1 1 " i n parameter No. 1 of the servo amplifier to choose the electromagnetic brak e interlock sign al. Y41 X31 Y44 Electromag[...]

  • Page 285

    15 - 34 15. ABSOLUTE POSITION D ETEC TION SY STEM (4) Seq uence program - 2-ax is con trol The following program is a reference example for creation of an ABS sequence program for the second axis ( Y axis) u sing a single A 1SD71 mod ule. Cre ate a p rogram fo r the th ird axi s in a sim ilar man ner. (a) Y-axis program Refer to the X-axis ABS sequ[...]

  • Page 286

    15 - 35 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.8.2 MEL SEC FX (2N) -32MT (FX (2N) -1PG) (1) Connection diagram (a) FX-32MT (FX-1PG) 3.3k 3.3k 3.3k N COM2 Y4 Y5 Y6 Y10 24 SG SG S/S DOG STO P VH VL FPO FP COM0 RP RPO COM1 CLR L Power s upply FX-32 MT SG 10 DO1 4 ZSP 19 TLC 6 ALM 18 RD EMG 15 SON 5 ABS M 8 ABS R 9 RES 14 DOG SD 15V FX-1PG Servo [...]

  • Page 287

    15 - 36 15. ABSOLUTE POSITION D ETEC TION SY STEM (b) FX 2N -32MT (FX 2N -1PG) 3.3 k 3.3k 3.3k CN1B N COM2 Y4 Y5 Y6 Y10 24 S/S DOG STOP VIN FP COM0 RP COM1 CLR L Power supply FX 2N -32M T SG 10 DO1 4 ZSP 19 TLC 6 ALM 18 RD EMG 15 SON 5 ABSM 8 ABSR 9 RES 14 DOG SD FX 2N -1PG Servo amplifier COM X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 COM1 Y0 X0[...]

  • Page 288

    15 - 37 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) Seq uence program exam ple (a) Conditions 1) Ope ration pattern ABS data transf er is made as soon as the servo-on pushbutton is turned on. After that , positioni ng operation is performed as shown below: 300000 0 address 3) 1) 2) Home po sition 300000 After the completion of ABS data t ransmiss[...]

  • Page 289

    15 - 38 15. ABSOLUTE POSITION D ETEC TION SY STEM (b) Device list X input contact Y output contact X0 ABS bit 0 / co mpleti on of posi tioni ng Y0 Serv o-on X1 ABS bit 1 / zero speed Y1 ABS transfer mode X2 Send AB S data ready / torque limit c ontrol Y 2 ABS requ est X3 Serv o alarm Y3 Ala rm reset X4 Alarm rese t PB Y4 (Note 2) Elec tromagnetic b[...]

  • Page 290

    15 - 39 15. ABSOLUTE POSITION D ETEC TION SY STEM (c) ABS data transfer program for X-a xis M8002 D24 K0 DMOV K1 K0 K3 K0 TO K1 K100000 K4 K0 DTO K1 K10000 K7 K0 DTO K1 K50000 K9 K0 DTO K1 K1000 K11 K0 TO K1 K2 K12 K0 TO K1 D24 K13 K0 DTO K1 K200 K15 K0 TO K1 K100000 K19 K0 DTO 1 1 D100 K300000 DMOV D102 K 250000 DMOV D104 K0 DMOV Z K0 DMOV D4 K4 D[...]

  • Page 291

    15 - 40 15. ABSOLUTE POSITION D ETEC TION SY STEM X6 M6 M5 SET M5 Y12 X6 Y0 Y12 1 1 2 2 M64 M62 ZRST M1 PLS C1 RST C2 C0 ZRST M99 RS T M5 RST Y1 RST Y2 RST M6 RST Servo-on request Servo-on output ABS data transmission star t Clearing retry counter Resetting ready to send ABS dat a Resetting servo- on request Resetti n g ABS transfer mode Resetti n [...]

  • Page 292

    15 - 41 15. ABSOLUTE POSITION D ETEC TION SY STEM X4 M0 Y3 Y3 C1 RST M64 M0 ZRST X5 X3 M1 2 2 3 3 D3 D0 ZRST C2 RST C0 RST M0 Y10 Y1 RST Y2 RST M99 RST M5 RST M6 RST Y1 SET M64 M10 ZR ST D2 D0 ZRST C2 RST C0 RST Alarm reset output Cl eari ng r et ry co unt er Cl eari ng A BS d ata rec eiv ing area Cl eari ng A BS r ece ive dat a buffer Resetting AB[...]

  • Page 293

    15 - 42 15. ABSOLUTE POSITION D ETEC TION SY STEM Y1 X2 M3 PLS M3 Y2 X2 C2 C2 C0 M64 3 3 4 4 D3 K2M52 MOV Y2 SET K1M10 H0003 K1X0 W ANDP K2 K38 M20 M10 SFTR D2 D2 K1M 10 ADDP K16 C0 K19 Y2 RST Y1 RST D2 D2 H003F WANDP M62 D2 K2M52 CMPP C1 M62 C1 Y12 M2 PLS T200 K10 M6 SET M5 RST ABS data 32 bits (2 bits 16 tim es) Check sum 6 bits (2 bi ts 3 tim es[...]

  • Page 294

    15 - 43 15. ABSOLUTE POSITION D ETEC TION SY STEM M63 D0 K8M20 DMOVP D0 D24 D0 DADDP K1 D0 K26 K0 DTOP M99 SE T Y11 X6 Y1 T201 Y1 Y2 Y1 X2 T201 T202 T203 M2 T200 M6 4 4 5 5 M64 M62 ZRST M6 RST Y1 RST Y2 RST K500 T202 K100 T203 K100 Y11 C1 D4 M5 SET Writin g absolu te position data to 1PG Detecting ABS communication error ABS transfer retry contr ol[...]

  • Page 295

    15 - 44 15. ABSOLUTE POSITION D ETEC TION SY STEM M8000 M109 X7 X12 M9 9 M120 PLS X10 JOG X11 JOG X7 X14 M120 K1 D100Z K17 K0 DTO M121 K6 Z DCMP M122 INDX 6 Z K0 DMOV X12 M0 X16 5 5 6 6 M110 M111 M112 M102 M103 M104 M105 M106 108 SET Z DINC Z DINC M101 M100 (Note) 1PG control command (not used) Oper ati on command control Positio n command control [...]

  • Page 296

    15 - 45 15. ABSOLUTE POSITION D ETEC TION SY STEM M8000 K1 K4M 100 K25 K0 TO M200 K1 K3M200 K28 K0 FROM K1 D106 K26 K0 DFROM M108 RST END 6 6 FX2 1PG Transmission of control signals 1PG FX2 Transmission of status 1PG FX2 Transmission of present position D106, D107 1PG Resetting start command (Continu ed from pre ceding pa ge) Normally ON[...]

  • Page 297

    15 - 46 15. ABSOLUTE POSITION D ETEC TION SY STEM (d) Data set t ype home position retur n After jogging the machine to the position where the home positi on (e.g.500 ) is to be set, choose the home positio n retu rn mod e set the ho me pos ition w ith th e home posit ion retu rn start ( PBON). After switching power on, rotate the servo motor more [...]

  • Page 298

    15 - 47 15. ABSOLUTE POSITION D ETEC TION SY STEM (g) Zero speed To create the sta tus information for servo zero speed. During ABS data tr ansfer (for several seconds af ter the servo-on signal is turned on), the servo motor must be at a s top. Y1 X1 M Y1 Servo zero speed ABS tran sfer mode Zero sp eed ABS tran sfer mode (h) Torque limiting To cre[...]

  • Page 299

    15 - 48 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.8.3 M ELSEC A1SD 75(AD75) (1) Connection diagram PULSE- R PULSE- F PGO DOG STOP RDY 4 22 3 21 25 24 7 14 11 0 1 2 3 4 5 7 COM 8 9 A B C D E F COM NC NC 6 0 1 2 3 4 5 7 6 8 9 A B A1SD7 5-P A1SY4 0 A1SX4 0 A1SCP U A1S6 2P Powe r supply INPUT AC100/200 COM1 COM2 PLS 12 RLS 13 CHG 15 START 16 35 36 I[...]

  • Page 300

    15 - 49 15. ABSOLUTE POSITION D ETEC TION SY STEM Note 1: For the dog typ e home position r eturn. Need n ot be connected f or the data set type home p osition return. 2: If the servo motor provided with the z ero point signal is started, the A1SD75(AD75) will output the deviatio n counter clear signa l . Ther efore, d o not con n ect th e cl ear s[...]

  • Page 301

    15 - 50 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) Seq uence program exam ple (a) Conditions 1) When the servo-on signal a nd power supply GND are shorted, t he ABS data is t ransmit ted at power-on of the servo amplifier or on the leading edge of the RUN signal a fter a PC reset operati on (PC-RESET). T he ABS data is als o transm itt ed when a[...]

  • Page 302

    15 - 51 15. ABSOLUTE POSITION D ETEC TION SY STEM (c) ABS data transfer program for X a xis This seq uence program example assumes the followi ng conditions: Parame ters o f the A1 SD75-P 1 (AD7 5-P1) p ositio ning mo dule 1) Un it sett in g :3 pulse (PLS) 2) Trave l per pu lse :1 1 pul se To select the unit other than the pulse, conversi on into t[...]

  • Page 303

    15 - 52 15. ABSOLUTE POSITION D ETEC TION SY STEM X26 M13 SET M23 K1 D11 K8 16 H0000 FRO M D11 H0 001 WAND M23 1 1 2 2 D11 K1 M24 PLS M13 M14 M1 6 X26 M8 RST M13 RST C0 RST C1 RST Y30 M5 PLS M13 M17 PL S M17 X24 M14 Y33 X25 Y33 X23 C2 RST M14 M8 RST M13 RST Y38 7) Servo -on control ABS tr ansfer retry control Servo alarm detection, alarm reset cont[...]

  • Page 304

    15 - 53 15. ABSOLUTE POSITION D ETEC TION SY STEM M5 D0 K16 MOV M5 Y31 C1 2 2 3 3 D1 K3 MOV D2 K0 MOV D5 K0 MOV D9 K0 DM OV A0 K0 DM OV C0 RST C1 RST Y31 8) C0 C1 Y31 D3 A0 DMOVP K1 D8 K5 H0000 FROMP M18 PLS M18 A0 K0 MOVP D8 H0001 WAND A1 H8000 WAND D4 NEG D4 K1 D3 NEG D4 K1 D8 K1 K0 D3 9) 10) Initializing ABS data transmission counter Initializ i[...]

  • Page 305

    15 - 54 15. ABSOLUTE POSITION D ETEC TION SY STEM M9 C0 C1 3 3 4 4 D5 K1X20 MOV D5 H0003 WAND A0 D5 WOR K2 ROR M10 PLS D1 M9 C0 D5 K1X20 MOV K2 DROR D2 D2 D5 C0 C1 C2 D5 H0003 WAND A0 D5 WOR D0 M11 PLS K10 RORP A0 H003F WAND M6 M7 D6 A0 MOV Y3A D2 A0 D2 A0 11) 11) Reading checksum 6bits (2 bits 3 time s) Reading AB S da ta 32 bits (2 bits 16 times)[...]

  • Page 306

    15 - 55 15. ABSOLUTE POSITION D ETEC TION SY STEM M11 M10 Y31 X2 2 M12 Y32 X2 2 Y32 X22 T200 4 4 5 5 Y32 RS T M12 PLS Y32 SE T T200 K1 M9 M6 K1 D9 K0 072 H0000 DFROP D3 D3 K D*P D3 D9 D3 D P M6 Y3B M24 M8 SET K1 D3 K1 154 H0000 DTOP K1 K9003 K1150 H0000 TO Y10 SE T Y10 X1 X4 XA Y10 RS T 12) 13) 15) 14) 7) ABS request control Restoring a bsolute pos[...]

  • Page 307

    15 - 56 15. ABSOLUTE POSITION D ETEC TION SY STEM Y39 X26 Y31 T0 Y31 Y32 Y31 X22 T0 T1 T3 5 5 Y31 RST K50 T1 K10 T3 K10 Y39 M7 M15 C2 M16 T2 M9039 END M15 PLS M16 SET C2 D7 T2 K1 M16 RST D110 A0 DMOV Detecting ABS communication error ABS tran sf er retry con trol Resetting ABS t ransfer mode ABS transfer mode 5s timer ABS request response 1s timer [...]

  • Page 308

    15 - 57 15. ABSOLUTE POSITION D ETEC TION SY STEM (d) X-axis program Do not execute the X-axis program while the ABS ready (M8) is off. M8 When "M8" (ready to send ABS dat a) switches on, the X-axis start program is execut ed by the X-axis start command. X-a xis st art pro gra m Positioning mode X-axis start command Ready to send ABS data[...]

  • Page 309

    15 - 58 15. ABSOLUTE POSITION D ETEC TION SY STEM (f) Data set type home position ret urn After jogging the machine to the position where the home position (e. g. 500) is to be set, choose the home positio n retu rn mod e and set the home posit ion wi th the h ome po sitio n retu rn star t (PBO N). After switching power on, rotate the servo motor m[...]

  • Page 310

    15 - 59 15. ABSOLUTE POSITION D ETEC TION SY STEM (g) Electromagnetic brake output During ABS data tr ansfer (for several seconds af ter the servo-on signal is turned on), the servo motor must be at a s top. Set "1 1 " in parameter No. 1 of the servo amplifi er to choose the electromagnetic bra k e interlock sign al. Y31 X21 Y34 Elec trom[...]

  • Page 311

    15 - 60 15. ABSOLUTE POSITION D ETEC TION SY STEM (3) Seq uence program - 2-ax is con trol The following program is a reference example for creation of an ABS sequence program for the second axis ( Y axis) u sing a single A 1SD75 mod ule. Cre ate a p rogram fo r the th ird axi s in a sim ilar man ner. (a) Y-axis program Refer to the X-axis ABS sequ[...]

  • Page 312

    15 - 61 15. ABSOLUTE POSITION D ETEC TION SY STEM (4) D ifferenc es bet ween A1S D75 (A D75) and A1SD 71 (AD7 1) The sequence programs shown in (2) of this section differ from those for the A1SD71 (AD71) in the follow ing por tions. 1) to 2 0) in th e follow ing sentence s indic ate the number s in the prog rams giv en in (2) of this section. (a) D[...]

  • Page 313

    15 - 62 15. ABSOLUTE POSITION D ETEC TION SY STEM 6) Wri ting a bsolute posi tion d ata to A1SD75 The slo t num ber and bu ffer ad dre ss of the X-a xis c urrent value changing area are change d from [DTOP H000 1 K41 D3 K1] to [DTOP H0000 K1154 D3 K1 ] 14 ). W hen t he c u rr e nt va l u e is c ha n g e d in the A1SD75, the curren t feed value is c[...]

  • Page 314

    15 - 63 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.9 Confir mation of absolute p osition detect ion data You can confirm the absolute po siti on data with servo configuration software (MRZJW3-SETUP121E). Choose "Diagnost i cs" and " Absol ute Encoder Data" to open the absolute positi on data dis play screen. (1) Ch oosing &quo[...]

  • Page 315

    15 - 64 15. ABSOLUTE POSITION D ETEC TION SY STEM 15.10 Abs olute posit ion data tra nsfer er rors 15.10.1 C orrective act ions (1) Error list The nu mber w ithin p arenth ese s in the table indica tes the outp ut co il or inp ut con tact nu mber of the A1SD7 1 (AD71). Output coi l Name A D71 1PG Des cription Cause Act ion 1. Wiring fo r A B S tra [...]

  • Page 316

    15 - 65 15. ABSOLUTE POSITION D ETEC TION SY STEM (2) ABS communicati on error (a) The OFF period of the send data ready signal output from the servo ampl ifier is check ed. If the OFF period is 1s or longer, this is regarded as a t ransfer fault an d the ABS communication error is generated. The ABS communication error occu rs if the ABS time-out [...]

  • Page 317

    15 - 66 15. ABSOLUTE POSITION D ETEC TION SY STEM (c) To detec t the AB S time- out wa rning ( AL.E 5) at the servo ampl ifier, the time require d for the AB S reque st sign al to go OFF after it has be en tur ned ON (ABS re ques t time) is chec ked. If the AB S request remains ON for longer than 1s, it is regarded that an fault relating to the ABS[...]

  • Page 318

    App - 1 App endix App 1. Sig nal arr angement r ecording sheets (1) Positio n control mode 1 2 3 5 4 6 7 9 8 10 11 12 13 14 15 16 17 18 19 20 DO1 LG VDD SG P15R COM 1 2 3 5 4 6 7 9 8 10 11 12 13 14 15 16 17 18 19 20 COM OPC SG NG SG SG CN1A CN1B LB LAR LA LZR LZ OP P15R PG PP NP LG LBR EMG LSP TLA LSN (2) Speed control mode 1 2 3 5 4 6 7 9 8 10 11 [...]

  • Page 319

    App - 2 Appendix App 2. Analog monit or block diagr am PWM M Current control Speed control Current comm and Position control Dr oop pu ls e Differ- ent ial Command pulse frequency Bus voltage Speed comm and Command pul se Current feedback Position feedback Generated torque Motor speed Current enco der Se r v o Mo t or Encoder[...]

  • Page 320

    App - 3 Appendix App 3. Stat us display block diag ram Effec tive load ratio Effec tive value calculation Instantaneous torque Peak load ratio Peak hold PWM M Current control Spe ed control Ser vo motor speed Position control Droop pulse Present position calcula tion ABS counter Within one- revol u ti on p o s it ion low high Load inertia momen t r[...]

  • Page 321

    App - 4 Appendix MEMO[...]

  • Page 322

    REVISIONS *The manual numb er is given on the bottom left of t he b ack cover. Print data *Manual n umber Revision Nov.,1999 S H(NA)030006-A First edition Sep.,2000 SH(N A)030006-B Addition of single -phase 100VAC specifications Compatib le Servo Conf iguration software model name change Compl ia n ce with EC Dire ctives 1: Revie w of sentence Sect[...]

  • Page 323

    Print data *Manual n umber Revision Sep.,2000 SH(N A)030006-B Section 10.2.2: Additi on of descripti on to AL.30 Addition of Cause t o AL.33 Chapter 11: C hanged to only outl ine dimens ional drawing Section 11.2 (2) : Addition Section 1 2.2 (1): Review of Note for Tabl e 12.1 Sectio n 12.3: Correctio n of dynamic brake time constan t graph Chapter[...]