Marathon F200060 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Marathon F200060, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Marathon F200060 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Marathon F200060. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Marathon F200060 should contain:
- informations concerning technical data of Marathon F200060
- name of the manufacturer and a year of construction of the Marathon F200060 item
- rules of operation, control and maintenance of the Marathon F200060 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Marathon F200060 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Marathon F200060, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Marathon service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Marathon F200060.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Marathon F200060 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Marathon Sens ors Inc. Oxymit ™ Tran smitter Operators Manua l[...]

  • Page 2

    F200060 Revision: 00 04/18/2001 01 04/23/2001 02 05/08/2001 03 09/19/2001 04 11/01/2001 05 11/21/2001 06 04/19/2002 07 10/30/2002 08 11/13/2002 09 11/06/2003 10 12/03/2003 11 09/30/2004 12 04/04/2005 13 04/11/2005 14 11/14/2006 COPYRIGHT © 2004 MARATHON SENSORS INC. 3100 East Kemper Road, Cincinnati, Ohio 45241 1-800-547-1055 (513) 772-1000 FAX: ([...]

  • Page 3

    Table of Contents GENERAL DESCRIPTION ................................ ................................ ................................ ............................ 2 SAFETY SUMMARY ................................ ................................ ................................ ................................ ...... 3 CONNECTIONS ..............[...]

  • Page 4

    Page 1 of 23 11/14/200 6 Rev. 14 NOTE: Please specify the following parameters when ordering a transmitter; process type, process range (%, ppm), thermocouple type, temperature scale F/C, analog output 1 process and scale, analog output 2 process and scale. Typical Oxygen Transmitter Calibration (F840030) Calibration Function Measured Value or Inpu[...]

  • Page 5

    Page 2 of 23 11/14/200 6 Rev. 14 General Descr iption The Oxymit ™ Transmitter has been designed to work as an analog or digital interface for any zirconia based oxygen probe used to track dew point, carbon potential, or oxygen. The transmitter connects to the temperature and millivolts outputs of an ox y gen probe and can produce analog outputs [...]

  • Page 6

    Page 3 of 23 11/14/200 6 Rev. 14 Safety Summ ary All cautions and instructions that appear in this manual must be complied with to prevent personnel injury or damage to the Probe T ransmitter or connected equipment. The specified limits of this equipment must not be ex ceeded. I f these limits are exceeded or if this instrument is used in a manner [...]

  • Page 7

    Page 4 of 23 11/14/200 6 Rev. 14 The next figure shows a schematic represent ation of the Probe Transmitter and t ypica l connections required in the field. Figure 3 S chematic Connections Grounding and Shielding To minimize the pick-up of electrical noise, the low vol tage DC connections and the senso r input wiring should be route d awa y fr om h[...]

  • Page 8

    Page 5 of 23 11/14/200 6 Rev. 14 Table 1 Process Pa rameters Parameter Name Selection Default Units or Option s Range PROCESS TYPE %O2 CARBON, DPT, %O2, MV CARB PROC FACT 150 0 to 1000 DEWPT PROC FACT 150 0 to 1000 OXYGEN EXPON 0002 POWER OF TEN 0 to 31 TC TYPE B B, C, E, J, K, N, NNM, R, S, T Process Type Selecting the process t y pe determines wh[...]

  • Page 9

    Page 6 of 23 11/14/200 6 Rev. 14 Oxygen Exponent The range of ox y gen is factor y configured using the oxygen exponent number. Percent oxygen is the standard setting where the oxygen exponent is set to 2 and the output range is 0.00% to 20.9%. For a part per million ( ppm) range the exponent would be set to 6 and the output range of 0.00 X 10 -6 t[...]

  • Page 10

    Page 7 of 23 11/14/200 6 Rev. 14 Table 2 Analog Outputs Parameter Name Oxygen Default Possible Options Possible Ranges OUTPUT 1 MODE O2 0–20.9% 4-20mA O2, CARBON, DEWPT, TEMP, LIN, PROG O2 = 0 – 9999 %C = 0.00 – 2.55 DP = -99.9 – 212.0 Temp = -999 – 3000 LIN = -999 – 9999 PROG = 0 – 4095 OUTPUT 2 MODE TEMP 800-3000°F 4-20mA O2, CARBO[...]

  • Page 11

    Page 8 of 23 11/14/200 6 Rev. 14 Process Variable Calcu lations The transmitter has a selectable process cal culation for percent carbon, percent ox yge n, or dewpoint. The followin g equations are used to derive these values; Percent Oxygen 20.95 %O2 = -------------------- --- e (E/0.0215*Tk) Where: E = probe millivolts, Tk = probe temperature in [...]

  • Page 12

    Page 9 of 23 11/14/200 6 Rev. 14 Communications The Transmitter is capable of digital communications usin g the Modbus protocol. Thi s is possible by connecting to the half duplex RS-485 terminals using a shielded twisted pair. Modbus The MODBUS protocol describes an industrial communications and distributed control system ( DCS) that integrates PL[...]

  • Page 13

    Page 10 of 23 11/14/200 6 Rev. 14 byte received will be an address. The follow command messa ge structure is used, where T is the required character delay. Response from the instrument is based on the command. T1 ,T2,T3 ADDRESS FUNCTION DATA CHECKSUM T1,T2,T3 8-BITS 8-BITS N X 8-BITS 16-BITS Address Field The address field immediatel y f ollows the[...]

  • Page 14

    Page 11 of 23 11/14/200 6 Rev. 14 The following is an example of a fun ction 03 call for dat a at memory location 03. The value returned by the instrument is t he hex value 1E. Transmit from Host or Master Address Cmd Reg HI Reg LO Count HI Count LO CRC HI CRC LO 01 03 00 03 00 01 74 0A Response from Transmitter Address Cmd Byte Count HI Byte Count[...]

  • Page 15

    Page 12 of 23 11/14/200 6 Rev. 14 Memory Map NOTE: Modbus refers to the he xadecimal register location. These parameters are formatted as unsigned 16 bit integers. An y real number suc h as temperature can be evaluated as a signed number , other parameters are bit mapped words that must be evaluated as single bits are bit groups. BLOCK 0 HEX DEC PA[...]

  • Page 16

    Page 13 of 23 11/14/200 6 Rev. 14 BLOCK 0 HEX DEC PARAMETER DESCRIPTION READ/W RITE DEFAULT = 150 05 5 EVENT LDLN LOW BYT E – INPUT EVENT CONFIGURAT ION Bits 0 – 3 0000 = None 0001 = Auto Mode Selected 0010 = Rem ote Setpoint Se lected 0011 = Acknowledge alarms 0100 = Tim er Hold 0101 = Tim er End 0110 = Tim er Start 0111 = Start pr obe test 10[...]

  • Page 17

    Page 14 of 23 11/14/200 6 Rev. 14 BLOCK 0 HEX DEC PARAMETER DESCRIPTION READ/W RITE BITS 0 - 4 OXYGEN E XPONENT RANGE = 0 to 31, where 2 = % and 6 = ppm DEFAULT = 2 BITS 5 - 6 DISPL A Y DECIM A L PL ACE where: 0 = no decimal point in di spla y 1 = Display X XX.X 2 = Display X X.XX 3 = Display X .XXX DEFAULT = 0 BITS 8 – 12 REDOX M ETAL NUM BER RA[...]

  • Page 18

    Page 15 of 23 11/14/200 6 Rev. 14 BLOCK 0 HEX DEC PARAMETER DESCRIPTION READ/W RITE HIGH BYT E, ANALOG OUTPUT 2 BITS 8 – 12 0000 = N/A 0001 = Tem perature 0010 = Linear I nput A 0011 = Carbon value 0100 = Dewpoint value 0101 = Ox ygen value 0110 = Red ox value 0111 = O utput Power 1000 = Contr ol Output 1 1001 = Contr ol Output 2 1010 = Linear I [...]

  • Page 19

    Page 16 of 23 11/14/200 6 Rev. 14 BLOCK 0 HEX DEC PARAMETER DESCRIPTION READ/W RITE source value is b ased on the s election in ASRC upper b yte where 14 20 SPAR E SPARE READ/W RITE 15 21 SPAR E SPARE READ/W RITE 16 22 SPAR E SPARE READ/W RITE 17 23 T EMPFIL Temperature Inpu t Filter in seco nds Range = 0 t o 3276. The higher the num ber the faster[...]

  • Page 20

    Page 17 of 23 11/14/200 6 Rev. 14 BLOCK 1 HEX DEC PARAMETER DESCRIPTION READ/W RITE 22 20 DACV2 ANALO G OUTPUT 2 0 to 4095 is 4 to 20 m a In dual m ode 4mA = - 100, 12m A = 0, 20mA = +100 READ/W RITE 23 35 SPAR E SPARE 24 36 SPAR E SPARE 25 37 SPAR E SPARE 26 38 SPAR E SPARE 27 39 SPAR E SPARE 28 40 SPAR E SPARE 29 41 SPAR E SPARE 2A 42 SPARE SPAR [...]

  • Page 21

    Page 18 of 23 11/14/200 6 Rev. 14 Operational Spe cifications Power input 21.6 to 26.4 volts DC / 1 30mA Thermocouple input Thermocouple type Zero ºF Span ºF B 800 3000 C 32 3000 E 32 1300 J 32 1300 K 32 2300 N 32 2300 NNM 32 2000 R 300 3000 S 300 3000 T 32 700 Bold shows default Accuracy after linearization +/- 1 deg F Millivolt input -200 to 20[...]

  • Page 22

    Page 19 of 23 11/14/200 6 Rev. 14 Thermocouple Null Thermocouple Span Cold Junction Trim Communications port RS-485 Half Duplex Only Protocol Modbus RTU Baud rates 1200, 2400, 4800, 9600, 19.2K (19.2K default ) Parity None Address 1 – 254 ( Address 1 is default ) Housing Material Polyamide PA non-reinforced Inflammability Evaluation Class V0 (UL9[...]

  • Page 23

    Page 20 of 23 11/14/200 6 Rev. 14 Fast Transients EN 61000-4-4 Level 4: 2 kV I/O Level 3: 2 kV power RF conducted interference EN 61000-4-6 Level 3: 10 V/ rms 150 KHz – 80 MHz Emissions as specified by EN 50081-2 RF Interference EN 55011 Enclosure class A Power main class A Note: This i nstrument is designed f or installation insi de a grounde d [...]