Intel 945G manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Intel 945G, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Intel 945G one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Intel 945G. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Intel 945G should contain:
- informations concerning technical data of Intel 945G
- name of the manufacturer and a year of construction of the Intel 945G item
- rules of operation, control and maintenance of the Intel 945G item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Intel 945G alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Intel 945G, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Intel service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Intel 945G.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Intel 945G item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Document Number: 307504-004 Intel ® 945G/945GZ/945GC/ 945P/945PL Express Chipset Family Thermal and Mechanical De sign Guidelines (TMDG) - For the Intel ® 82945G/82945GZ/82945GC Graphics Memory Controller Hub (GMCH) and Intel ® 82945P/82945PL Memory Controller Hub (MCH) February 2008[...]

  • Page 2

    2 Thermal and Mechanical Design Guidelines INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNE CTION WITH INTEL® PRODUCTS . NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIAB[...]

  • Page 3

    Thermal and Mechanical Design Guidelines 3 Contents 1 Introduc tion ..................................................................................................... 7 1.1 Terminology .......................................................................................... 8 1.2 Reference Do cuments ............................................[...]

  • Page 4

    4 Thermal and Mechanical Design Guidelines Figures Figure 1. (G)MCH Non-Grid Array ...................................................................... 12 Figure 2. 0° Angle Attach Method ology (top view, not to scale).............................. 16 Figure 3. 0° Angle Attach Heatsink Modifi cations (generic heatsink side and bottom view shown[...]

  • Page 5

    Thermal and Mechanical Design Guidelines 5 Revision History Revision Number Description Date -001 • Initial Rel ease May 2005 -002 • Added Intel ® 82945PL specific ations October 2005 -003 • Added Intel ® 82945GZ specificati ons December 2005 -004 • Added Intel ® 82945GC specific ations F ebruary 2008 §[...]

  • Page 6

    6 Thermal and Mechanical Design Guidelines[...]

  • Page 7

    Introduction Thermal and Mechanical Design Guidelines 7 1 Introduction As the complexity of computer systems increases, so do power dissi pati on requirements. The additional power of next generati on systems must be properly dissipated. Heat can be dissi pated using improved system cooli ng, selective use of ducting, and/or active/passive heatsink[...]

  • Page 8

    Introduction 8 Thermal and Mechanical Design Guidelines 1.1 Terminology Term Description BGA Ball Grid Array. A package type defined by a resin-fiber substrate where a die is mounted and bonded. The primary electrical interface is an array of solder balls attached to the substrate opposite the die and molding compound. FC-BGA Flip Chip Ball Grid Ar[...]

  • Page 9

    Introduction Thermal and Mechanical Design Guidelines 9 1.2 Reference Documents Document Comments Intel ® 945G/945GZ/945P/945PL Express Chi pset Family Datasheet http://developer.intel.com/des ign/chipset s/datashts/307502. htm Intel ® I/O Controller Hub 7 (ICH7) Datasheet http://developer.intel.com//de sign/chipsets/datashts/30701 3.htm Intel ®[...]

  • Page 10

    Introduction 10 Thermal and Mechanical Design Guidelines[...]

  • Page 11

    Product Specifications Thermal and Mechanical Design Guidelines 11 2 Product Specifications This ch apter p rovide s the pa ckage d escrip tion and loading specific ations. T he chap ter also provid es compon ent therma l specificat ions and th ermal desig n power de scriptions for the (G)MCH. 2.1 Package Description The (G) MCH is availab le in a [...]

  • Page 12

    Product Specifications 12 Thermal and Mechanical Design Guidelines Figure 1. (G)MCH Non-Grid Array 2.2 Package Loading Specifications Table 1 provides static lo ad spec ifications fo r the chip set pa ckage. T his mechan ical maximum load limit sh ould not be e xceeded during heat sink assembly, s hipping conditions, or standard use conditions. Als[...]

  • Page 13

    Product Specifications Thermal and Mechanical Design Guidelines 13 2.3 Thermal Specifications To ensur e proper operation a nd reliabilit y of the (G) MCH, the temp erature mu st be at or below th e maximum value sp ecified in Table 2. System and component level thermal enhancements are required to dissipate the heat generated and mai ntain the (G)[...]

  • Page 14

    Product Specifications 14 Thermal and Mechanical Design Guidelines 2.4.1 Methodology 2.4.1.1 Pre-Silicon To dete rmine TDP for pre-silic on produ cts in deve lopment, it is necessa ry to make estimates b ased on a nalytical models. T hese mode ls rely on exte nsive knowledg e of the past chipset power dissipation behavi or al ong with knowledge of [...]

  • Page 15

    Thermal Metrology Thermal and Mechanical Design Guidelines 15 3 Thermal Metrology The system designer must measure temperatures to accurately determine the thermal performance of the system. Intel has established gui del ines for proper techniques of measuring (G)MCH component case temperatures. 3.1 Case Temperature Measurements To ensu re function[...]

  • Page 16

    Thermal Metrology 16 Thermal and Mechanical Design Guidelines Figure 2. 0° Angle Attach Methodology (top view, not to scale) Figure 3. 0° Angle Attach Heatsink Modifi cations (generic heatsink side and bottom view shown, not to scale) 3.2 Airflow Characterization Figure 4 describes the recommended location for ai r temperature measurements measur[...]

  • Page 17

    Thermal Metrology Thermal and Mechanical Design Guidelines 17 Figure 4. Airflow Temperature Measurement Locations Airflow velocity should be me asured u sing industry standard air velocity sensors. Typical airflow sensor technol ogy may include hot wire anemometers. Figure 4 provide s guidance for airflow velo city measure ment locat ions. These lo[...]

  • Page 18

    Thermal Metrology 18 Thermal and Mechanical Design Guidelines[...]

  • Page 19

    Reference Thermal Solution Thermal and Mechanical Design Guidelines 19 4 Reference Thermal Solution The reference component thermal solution fo r the (G)MCH for ATX platforms uses two ramp retainers, a wire preload cli p, and four custom MB anchors. The Intel Balanced Technology Extended (BTX) reference design uses a Z-clip attach for the (G)MCH he[...]

  • Page 20

    Reference Thermal Solution 20 Thermal and Mechanical Design Guidelines Figure 5. Processor Heatsink Orientation to Provide Airflow to (G)MCH Heatsink on an ATX Platform Proc _HS_Orient_ATX Airflow Direction Airflow Di rection Airflow Direction Airflo w Direc tion Airflow Di recti o n Airfl ow D irecti on Airflow Di recti o n Airfl ow Di rectio n (G[...]

  • Page 21

    Reference Thermal Solution Thermal and Mechanical Design Guidelines 21 Figure 6. Processor Heatsink Orientation to Provide Airflow to (G)MCH Heatsink on a Balanced Technology Extended (BTX) Platform Top Vi ew Balanced Tec hnol ogy Extende d (BTX ) Th ermal Mo d ule As s e mbly Ov er Process or (G)MCH Airf low D irection Proc _HS_O ri ent 4.2 Mechan[...]

  • Page 22

    Reference Thermal Solution 22 Thermal and Mechanical Design Guidelines Figure 7. ATX GMCH Heatsink Installed on Board[...]

  • Page 23

    Reference Thermal Solution Thermal and Mechanical Design Guidelines 23 Figure 8. Balanced Technology Extended (BTX) GMCH Heatsink Installed on Board[...]

  • Page 24

    Reference Thermal Solution 24 Thermal and Mechanical Design Guidelines 4.4 Environmental Reliability Requirements The envir onmental r eliability re quiremen ts for the referenc e thermal s olution are shown in Table 4. These s hould be conside red as genera l guidelin es. Validat ion test plans should be defined by the user based on antici pated u[...]

  • Page 25

    Enabled Suppliers Thermal and Mechanical Design Guidelines 25 Appendix A Enabled Suppliers Current suppliers for the Intel ® 945G/945GZ/945GC/945P/945PL Express chipset (G)MCH re ference thermal solu tion are list ed in Table 5 and Table 6. Table 5. (G)MCH ATX Intel Reference Heatsink Enabled Suppliers Supplier Intel Part Number Vendor Part Number[...]

  • Page 26

    Enabled Suppliers 26 Thermal and Mechanical Design Guidelines Table 6. (G)MCH Balanced Technology Extended (BTX) Intel Reference Heatsink Enabled Suppliers Supplier Intel Part Number Vendor Part Number Contact Information CCI (Chaun Choung Technology Corp.) C57359-001 00C863401A Monica Chih - +886 ( -2) - 29952666 monica_chih@ccic.com.tw Harry Lin [...]

  • Page 27

    Mechanical Drawings Thermal and Mechanical Design Guidelines 27 Appendix B Mechanical Drawings The following table list s the mec hanical dra wings availab le in this do cument. Drawing Name Page Number (G)MCH Package Drawing 28 (G)MCH Component Keep-Out Restrictions for ATX Platforms 29 (G)MCH Component Keep-Out Restrictions for Balanced Technolog[...]

  • Page 28

    Mechanical Drawings s 28 Thermal and Mechanical Design Guidelines Figure 9. (G)MCH Package Drawing[...]

  • Page 29

    Mechanical Drawings Thermal and Mechanical Design Guidelines 29 Figure 10. (G)MCH Component Keep-Out Restrictions for ATX Platf orms 8X PLATED THR U H O LE 8X 1.42[.056] T RA CE K E E P OUT 0.97 .038 [] 4 .1575 [] 74 2.9134 [] 47 1.85 [] 60.92 2.398 [] 4X 8 . 7 6 .345 [] 4X 8.76 .345 [] 4X 1.84 .072 [] 4X 5.08 .200 [] 81 3.189 [] 60.6 2.386 [] 26.7[...]

  • Page 30

    Mechanical Drawings s 30 Thermal and Mechanical Design Guidelines Figure 11. (G)MCH Component Keep-Out Restrictions for Balanced Technology Extended (BTX) Platforms 4X 8. 76 .3 4 5 [] 4X 4. 19 .1 6 5 [] 4X 1. 85 . 073 [] 4X 5. 08 .2 0 0 [] 4X 2. 1 . 08 3 [] 8X P L A T E D T HRU HO L E 0. 97 . 038 [] 48. 26 1. 900 [] 55. 8 8 2. 2 0 0 [] 2X 3. 3 .1 3[...]

  • Page 31

    Mechanical Drawings Thermal and Mechanical Design Guidelines 31 Figure 12. (G)MCH Reference Heatsink for ATX Platf orms – Sheet 1 2 X 58. 6 2.307 [] 2X 80 3. 150 [] 47 1.850 [] 36 1.417 [] 8X 2 . 7 0. 15 .1 0 6 .005 [] 7X E Q U A L SP A CING T YP 6 3. 7 5 0.15 .148 .00 5 [] T YP 3 5 .5 1.398 [] 2X 6 48 0.15 1.890 . 005 [] 2X 6 59. 28 0. 15 2.334 [...]

  • Page 32

    Mechanical Drawings s 32 Thermal and Mechanical Design Guidelines Figure 13. (G)MCH Reference Heatsink for ATX Platf orms – Sheet 2 2X 6 0.6 .0 2 4 [] TYP 6 2.75 0. 1 .108 . 003 [] 6 1. 5 0. 15 . 059 .00 5 [] 6 6. 72 0.15 . 265 .005 [] R0 . 5 .02 0 [] 2X 15 .59 1 [] 16 .63 0 [] 25. 5 1. 004 [] 66 2. 5984 [] TYP 4 .1575 [] TY P 135 TYP R 1 .03 9 [[...]

  • Page 33

    Mechanical Drawings Thermal and Mechanical Design Guidelines 33 Figure 14. (G)MCH Reference Heatsink for ATX Platf orms – A nchor 6 5. 21 0. 12 .20 5 . 004 [] 4X 6 7. 83 0.12 .30 8 . 004 [] 2X 10. 13 0. 12 .3 9 9 .004 [] 2X 6 0.77 0.1 .03 0 . 003 [] 7. 62 0. 15 .3 00 .005 [] 2.5 0.15 .098 .00 5 [] 0. 64 0 -0.07 .0 25 +. 0 0 0 -.002 [] 6 5.08 0.12[...]

  • Page 34

    Mechanical Drawings s 34 Thermal and Mechanical Design Guidelines Figure 15. (G)MCH Reference Heatsink for ATX Platf orms – R amp Retainer Sheet 1 2X 31.1 1.225 [] 6 2 0.05 .0 7 9 .0 01 [] 6 61. 51 2.422 [] 6 70.49 2. 775 [] 2X 27.95 1.1 00 [] 3 .11 8 [] NOT ES: 1. T HIS DRA W ING T O BE U S E D IN CO NJUNCT IO N W IT H SUP P LIED 3D DATABASE FIL[...]

  • Page 35

    Mechanical Drawings Thermal and Mechanical Design Guidelines 35 Figure 16. (G)MCH Reference Heatsink for ATX Platf orms – R amp Retainer Sheet 2 B B 6 1. 75 .06 9 [] 2.7 5 .108 [] 6 0.5 .02 0 [] 4 .15 7 [] 6 5. 56 . 219 [] 2X 6 2.9 . 114 [] 6.4 . 252 [] 6 3. 15 . 124 [] 6 4. 7 5 . 187 [] 3 .118 [] 5.2 . 205 [] 1. 19 . 047 [] 6.5 5 .25 8 [] 2X 6 5[...]

  • Page 36

    Mechanical Drawings s 36 Thermal and Mechanical Design Guidelines Figure 17. (G)MCH Reference Heatsink fo r ATX Platforms – Wire Preload Clip A A A A 46. 6 0. 5 1. 8 3 5 .0 19 [] 2X 90 TYP R 1 . 8 .07 1 [] 19.3 0. 5 .76 0 .0 19 [] 27.3 0. 5 1.075 .01 9 [] 4 27. 7 1. 090 [] 61.74 0. 5 2. 431 .019 [] 37.06 1.459 [] 2. 65 . 104 [] NOT ES: 1 . T HI S[...]

  • Page 37

    Mechanical Drawings Thermal and Mechanical Design Guidelines 37 Figure 18. (G)MCH Reference Heatsink for Bala nced Technology Extended (BTX) Platforms A 24.2 .953 [] 47.8 8 1.885 [] 15 X EQ U AL SPAC ES () 1.94 .08 [] 2X 1.17 .046 [] 3.4 0. 2 .134 .007 [] () 15 .59 1 [] 19 .748 [] 19 .74 8 [] 2X 1.2 .04 7 [] 2X 7.25 0.2 .28 5 .0 07 [] 3 0.2 .118 .0[...]

  • Page 38

    Mechanical Drawings s 38 Thermal and Mechanical Design Guidelines Figure 19. (G)MCH Reference Heatsink for Balanced Technology Extended (BTX) Platforms – Clip A A A A B B 2X 90 27. 3 1. 075 [] 47. 36 1. 865 [] R TYP 1. 3 . 051 [] 8. 87 1. 25 .3 4 9 .0 4 9 [] 4 X R 1 .8 .0 7 1 [] 3. 8 . 150 [] 62. 6 1 2. 465 . 039 [] 25. 14 . 990 [] W IR E T E R M[...]

  • Page 39

    Mechanical Drawings Thermal and Mechanical Design Guidelines 39 Figure 20. (G)MCH Reference Heatsink for Balanced Tec hnology Extended (BTX) Platforms – Heatsink Assembly () 55.88 2.200 [] C () 33 1.299 [] B () 19 .748 [] () 19 .748 [] N O TES: 1 . THIS DRAWIN G TO BE USE D IN C O NJ UN CT IO N WITH SUP P L IED 3 D DATABASE F I L E. AL L D IMENS [...]