Gossen MetraWatt R2600 manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Gossen MetraWatt R2600, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Gossen MetraWatt R2600 one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Gossen MetraWatt R2600. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Gossen MetraWatt R2600 should contain:
- informations concerning technical data of Gossen MetraWatt R2600
- name of the manufacturer and a year of construction of the Gossen MetraWatt R2600 item
- rules of operation, control and maintenance of the Gossen MetraWatt R2600 item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Gossen MetraWatt R2600 alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Gossen MetraWatt R2600, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Gossen MetraWatt service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Gossen MetraWatt R2600.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Gossen MetraWatt R2600 item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Interface description R2601 DIN Dr aft 19244 Interface 3-348-815-15 7/6.10[...]

  • Page 2

    [...]

  • Page 3

    GMC-I Messtechnik GmbH 3 INHALT Seite INHALT Seite 1 General ..................................................................................... 4 1.1 Interface hardware ..................................................................... 4 1.2 Communications protocol ........................................................... 4 1.3 How to conne[...]

  • Page 4

    GMC-I Messtechnik GmbH 4 1 General 1.1 Interface hardware T o communicate with a host computer , an SPS, etc., the controller R2601 must be equi pped with marking F1. In this case, the con trollers are equipped with a s erial in terfac e having the following data:  Level types RS-232 and RS-485 (two-wire) in the unit s electable  Baud rate 96[...]

  • Page 5

    GMC-I Messtechnik GmbH 5 1.3 How to connect the interface 1.3.1 RS-232 connection When using the a RS-232 interface, only one R2601 can be connected to a master (e.g. PC), for example, for pre-loading the unit with user -specific data. Depending upon the driver software, the jumpers on the master side can be omitte d and/or can be different. Sub-D [...]

  • Page 6

    GMC-I Messtechnik GmbH 6 1.3.2 RS-485 connection When using a RS-485 interface, as many as 32 equipment (R2601 and others) can be connected to the bus. Thereby , all terminals A, B and/or C are inte rconnected in parallel. The wiring must be made from equipment to equipment and mu st not be a sta r con- nection. With longer bus lines (longer than a[...]

  • Page 7

    GMC-I Messtechnik GmbH 7 Following, the master may only beco me active again, when – it receives a reply telegram fr om the addressed eq uipment and the specified wait time after a reply telegram (t aw) has elapse d, or – the maximum specified response delay time (t av ) has elapsed. Within a telegram, pauses of limited duration (t zv = charact[...]

  • Page 8

    GMC-I Messtechnik GmbH 8 2 T elegram structur e All telegrams consist of one of 3 sets in both request and reply direction, they differ in their principal structure. Their use is fixed for each interface function of the R2601. Structure and use of the set ty pes are described as follows. 2.1 Short set Short sets are used on the request side (from t[...]

  • Page 9

    GMC-I Messtechnik GmbH 9 2.2 Control set The R2601 uses control sets on the request side only. They serve to request all equipment data that cannot be requested via a s hort set because a detailed specification is required for them. Principal construction control set Character No . Contents Meaning Remarks 1 68h Start character 2 3 and/or 6 Length [...]

  • Page 10

    GMC-I Messtechnik GmbH 10 2.3 Long set The R2601 uses long sets to transmit instructions and paramete rs to the equipme nt and to receive data from the equipment. Principal construction long set Character No . Contents Meani ng Remark 1 68h Start character 2 Length Number of character s from equipment address to c hecksum exclusive 3 Length (repeat[...]

  • Page 11

    GMC-I Messtechnik GmbH 11 2.4 Function and value range of the format characters 2.4.1 Equipment address  0 ... 250 Range for individual equipme nt addresses = interface address Addr  255 All equipment connected to a bus can simultaneously be addressed under this address. Data and instructions entered with this ad dress are accepted by all equ[...]

  • Page 12

    GMC-I Messtechnik GmbH 12 2.4.2.2 Function coding of the function field (FF) in response direction Bit No. Function Value Meaning 0 ... 2 Reserved 0, 0, 0 (fixed) 3 Request disable 0 1 Instruction ex ecuted, equipment ready Equipment not ready for this instru ction, eventually repeat instruction 4 Instruction acknowled gement 0 1 Instruction ex ecu[...]

  • Page 13

    GMC-I Messtechnik GmbH 13 2.4.3 Parameter index (PI) The type of the data to be t ransmitted is defined via the pa rameter index. The "PI" charac ter is inte rpreted as follo ws: Functionally used data and/or setting p ara mete rs of an equipment are combined in the main parameter groups. Only those paramete r indices docu- mented in sect[...]

  • Page 14

    GMC-I Messtechnik GmbH 14 2.5 Criteria for the validity o f a request telegram The R2601 checks the characters of the telegrams re ceived in accordance wi th the following tables: If incorrect values are received for FF, PI and PS, the R2601 re sponds with a short set with set transmission error bit. If the user data is entered beyond its specific [...]

  • Page 15

    GMC-I Messtechnik GmbH 15 3 T elegram conte nts R2601 3.1 Equipment reset The addressed equipment performs a hardwa re reset same as in the case of a sh ort interruption of the auxiliary voltage. Example: Equipment address = 2 3.2 Interrogation: Equipment OK? The addressed equipment show s the function field only: Example: Equipment address = 3 See[...]

  • Page 16

    GMC-I Messtechnik GmbH 16 3.3 Request for cycle data You will get the most important measuring an d output values of the controller in one data package. Cyclic requests of these values are thus made possible in compact form (short set request. Example: Equipment address = 2 See 2.4.2.2 for contents of the function field (FF) The 7 characters of the[...]

  • Page 17

    GMC-I Messtechnik GmbH 17 3.4 Request for event data The event date, combined in 2 words, contain al l er ror messages a nd alarms of t he equipmen t. They can be called up via short se t to id entify a special error. This request can be made asynchronous, for ex ample, if the service request bit (colle cted errors) was set before in any random res[...]

  • Page 18

    GMC-I Messtechnik GmbH 18 Character Bit No. M eaning Display on equipment Remark 1. 0 Sensor breakage measuring circuit 2 Status error word 1 (control loop) 1 Wron g polarity measuring circuit 2 2 Analog error 3 Sensor breakage measuring circuit 1 4 Wron g polarity measuring circuit 1 5 Low limit 1 fallen below Associated data display flashes 6 Low[...]

  • Page 19

    GMC-I Messtechnik GmbH 19 3. 0 Sensor error position readback Error status word 2 (heating current monitor , equipment) 1 Sensor error heating current 2 3 4 Hea ting current not "off" with po sitioning signal switched off Current display flashes 5 Heating cu rrent < 80 % of th e set poi nt of the heating current with active positioning[...]

  • Page 20

    GMC-I Messtechnik GmbH 20 3.5 Request data from R2601 This communication makes it possible to request all values, param eters, configur ations, states and equipment markings. Thereby , the data is indi vidually addressed per para meter in dex. See section 4 for the comp lete list of all parameter indices. 3.5.1 Request an equipment specification Th[...]

  • Page 21

    GMC-I Messtechnik GmbH 21 3.5.2 Request for a temperature p arameter , for ex ample The parameter index is not 3xh, thus the characters "from/to ch annel" and "receipt No." = 1, 1, 0 are contained in the control and long se t. Example: Request for the maximum selecta ble set point ( SP H ) of the R2601 with address = 33 = 21h (s[...]

  • Page 22

    GMC-I Messtechnik GmbH 22 3.6 Send data to R2601 This communication makes it possible to set all parameters, configurations and operati ng states which can be changed via operat ion. Thereby , the data is individually addressed per pa rameter index. See section 4 fo r the complete list of all parameter indices. There is no protection against overwr[...]

  • Page 23

    GMC-I Messtechnik GmbH 23 See 2.4.2.2 for the contents of the function field (FF) The first character of the data block is th e configuration "sensor type". The second ch aracter (B marking) cannot be stored, bu t a c haracte r (any , e.g. 00h) must be sent. 3.6.2 Send a control parameter , for example The parameter index (PI) is not 3xh,[...]

  • Page 24

    GMC-I Messtechnik GmbH 24 4 Parameter indices of the equipment para meters For a request and/or transmission of data from and/or to the R2601, not only the parameter i ndex fo r the individual data but al so the format and thus the length of the data block in t he long set are of interest. From the column "Format" of the pa rameter tables[...]

  • Page 25

    GMC-I Messtechnik GmbH 25 04h High lim it for relay A2  15 bits (4.1.2) Same as PI = 01h Same as PI = 01h 05h Low limit for rela y A2  15 bits (4.1.2) Same as PI = 01h Same as PI = 01h 06h Low set point  15 bits (4.1.2) X1 ... SP H For fixed value controller , slave controller –MBU/2 ... SP H For di fferential controller 07h High set poi[...]

  • Page 26

    GMC-I Messtechnik GmbH 26 4.1.2 Unit of the temperature parameters The unit of the temperature parameter s depends upon – the range marking B1 ... B5 of the equipment (see PI = 33h), – the configured sensor type (see PI = 33h) and – the configured unit of the sensor (see PI = 32h). With standard signal (B2, B5) and Pt100 with 0.1  displ[...]

  • Page 27

    GMC-I Messtechnik GmbH 27 4.1.3 T a ble of measuring ranges Sensor type Lower range limit X1 U pper range limit X2 Range span MBU Code Kind T ype in °C in °F in °C in °F in °C in °F 0 TC J –18 0 850 1562 868 1562 1 L –18 0 850 1562 868 1562 2 K –18 0 1200 2192 1218 2192 3 B 0 32 1820 3308 1820 3276 4 S –18 0 1770 3218 1788 3218 5 R ?[...]

  • Page 28

    GMC-I Messtechnik GmbH 28 4.2 Control parameters The control parameters are listed in the main parameter index group 1. 4.2.1 T able of the control parameters PI Parameter Display Format U nit Setting range Remarks 10h Proportional band Heat 16 bits 0.1 % 1 ... 9999 11h Proportional band Cool 16 bits 0.1 % 1 ... 9999 12h Deadband 16 bits (4.1.2) 0 [...]

  • Page 29

    GMC-I Messtechnik GmbH 29 4.3 Control instructions The control instructions in main group 2 of the p arame ter index define the control action of the equipment 4.3.1 T able of the control instruction s PI Parameter Format U nit Se tting range Remarks Contents 20h Control status control channel 16 bits Bit field See 4.3.2 Controller type (= CnF1 , 2[...]

  • Page 30

    GMC-I Messtechnik GmbH 30 4.3.2 Control status controll er channel (PI = 20h): Bit No . V alue Meaning Remarks 2 - 0 000 001 010 011 Controller type = Limit monitor Positioner Two-state controller Heat / continuo us controller falling characteristic Two-sta te controll er Cool / co ntinu ous controller rising characteristic 100 101 110 Three-state [...]

  • Page 31

    GMC-I Messtechnik GmbH 31 4.3.3 Configuration of the 2nd signal input (PI = 22) Function signal input 2 Standard signal 2 Code B3 B4 B5 B4, B5 0 Fixed value controller (internal set point) 0 ... 20 mA 0 ... 10 V 1 Differentia l controller Fixed value co ntroller Differential cont roller 2– Slave controller 3– 4 – Fixed value controller 4 ... [...]

  • Page 32

    GMC-I Messtechnik GmbH 32 4.4 Equipment specifications The equipment specifications in main gro up 3 of the parameter index among others in clude marking identifi cation, softwar e versi on and some configurations. 4.4.1 T able of equipment specifications PI Parameter Format Uni t Setting rang e Remarks 30h Equ ipment marking 8 bits 26h Read only 3[...]

  • Page 33

    GMC-I Messtechnik GmbH 33 4.4.2 Marking identifications (PI = 31h) Bit No . Value Meaning Remark 2 ... 0 001 100 101 111 A4 A1 A2 A3 5 ... 3 010 011 100 101 111 B2 B1 B5 B4 B3 Different from PI = 33h 60 7 0 1 Series version OEM version of hardware and software[...]

  • Page 34

    GMC-I Messtechnik GmbH 34 4.4.3 Configuration: Sensor unit, continuous output (PI = 32h) Code Sensor unit 1) 1) When switchi ng-over , the physical quan tity of the temperature para meter is prese r ved Continuous output Code Function Note Output range Output quantity 0Dh The current setting 2) is stored as a user defined default setting. 2) Config[...]

  • Page 35

    GMC-I Messtechnik GmbH 35 4.4.4 Sensor type , B marking (PI = 33h) 1st character = sensor type: 2nd character = B marking: Code Sensor type 1) 1) A change in f luences th e presentation of the te mperature paramete rs Val ue Meaning Remarks T ype Kind Condition 0 B5 Read only , different from PI = 31h 0J Thermocouple For signal input 1 at marking B[...]

  • Page 36

    GMC-I Messtechnik GmbH 36 4.4.5 Configuration of alarms 1 / 2 (PI = 36h) Bit No . Alarms 1 3 ... 0 Code 1) Start-up suppression Contact Heating circuit monitor 0 Relative In active NOC Inactive 1 Absolute 2 Relative Ac tive 3 Absolute 4 Relative In active NCC 5 Absolute 6 Relative Ac tive 7 Absolute 8 Relative In active NOC Active 9 Absolute 0Ah Re[...]

  • Page 37

    GMC-I Messtechnik GmbH 37 4.5 Heating current monitor Main group 6 of the par ameter index includes the parameters for heat ing current monitor ing. 4.5.1 T able of the parameters fo r the heating current monitor 0 Relative In active NOC 1 Absolute 2 Relative Ac tive 3 Absolute 4 Relative In active NCC 5 Absolute 6 Relative Ac tive 7 Absolute 7 0 1[...]

  • Page 38

    GMC-I Messtechnik GmbH 38 5 Storage operatio ns T o store all parameter and configuration d ata of an equipment, it is not requir ed to address all data individually via paramete r indices. It is possible instead to directly read and/or write all data stored in the non-volati le d ata memory (E EPROM) in one record. This function serves to save the[...]

  • Page 39

    GMC-I Messtechnik GmbH 39 5.2 Send a record The long set for sending to the R2601 can practically only be generat ed from the received long set at the request of a record. The function field (6th character) in 69h (write data) must be changed for that purpose. When copying to another R2601, the equipment address must be a dapted (5th ch ar- acter).[...]

  • Page 40

    Edited in Germany • Subj ect to change without noti ce • A pdf version is available on t he internet GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone +49 911 8602-111 Fax +49 911 8602-777 E-Mail info@gosse nmetrawatt.com www.gossenmetrawatt.com[...]