Delta Electronics DNL SIP Series manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Go to page of

A good user manual

The rules should oblige the seller to give the purchaser an operating instrucion of Delta Electronics DNL SIP Series, along with an item. The lack of an instruction or false information given to customer shall constitute grounds to apply for a complaint because of nonconformity of goods with the contract. In accordance with the law, a customer can receive an instruction in non-paper form; lately graphic and electronic forms of the manuals, as well as instructional videos have been majorly used. A necessary precondition for this is the unmistakable, legible character of an instruction.

What is an instruction?

The term originates from the Latin word „instructio”, which means organizing. Therefore, in an instruction of Delta Electronics DNL SIP Series one could find a process description. An instruction's purpose is to teach, to ease the start-up and an item's use or performance of certain activities. An instruction is a compilation of information about an item/a service, it is a clue.

Unfortunately, only a few customers devote their time to read an instruction of Delta Electronics DNL SIP Series. A good user manual introduces us to a number of additional functionalities of the purchased item, and also helps us to avoid the formation of most of the defects.

What should a perfect user manual contain?

First and foremost, an user manual of Delta Electronics DNL SIP Series should contain:
- informations concerning technical data of Delta Electronics DNL SIP Series
- name of the manufacturer and a year of construction of the Delta Electronics DNL SIP Series item
- rules of operation, control and maintenance of the Delta Electronics DNL SIP Series item
- safety signs and mark certificates which confirm compatibility with appropriate standards

Why don't we read the manuals?

Usually it results from the lack of time and certainty about functionalities of purchased items. Unfortunately, networking and start-up of Delta Electronics DNL SIP Series alone are not enough. An instruction contains a number of clues concerning respective functionalities, safety rules, maintenance methods (what means should be used), eventual defects of Delta Electronics DNL SIP Series, and methods of problem resolution. Eventually, when one still can't find the answer to his problems, he will be directed to the Delta Electronics service. Lately animated manuals and instructional videos are quite popular among customers. These kinds of user manuals are effective; they assure that a customer will familiarize himself with the whole material, and won't skip complicated, technical information of Delta Electronics DNL SIP Series.

Why one should read the manuals?

It is mostly in the manuals where we will find the details concerning construction and possibility of the Delta Electronics DNL SIP Series item, and its use of respective accessory, as well as information concerning all the functions and facilities.

After a successful purchase of an item one should find a moment and get to know with every part of an instruction. Currently the manuals are carefully prearranged and translated, so they could be fully understood by its users. The manuals will serve as an informational aid.

Table of contents for the manual

  • Page 1

    Evaluation Procedure (DEP-001 A) The Delphi DNM and DNL Series of SIP type POL converters The DNM and DNL, 2.4~5.5V or 10~14V input, programmable output, non-isolated point of load DC/DC converters, are the latest of fering from one of the world’s largest power supply manufacturers ― Delta Electronics, Inc. The DNM and DNL product family also h[...]

  • Page 2

    2 3.0 Equipment Required 3.1 A DC Power Supply 0 - 20 V @ 0 - 20A (Agilent 6574A 0 -60V/0 - 35A or equivalent). 3.2 An oscilloscope (T ektronix TDS 3034 or equivalent) 4 Channel 300 MHz, equipped with a x1 scope probe, a x10 scope probe, and two BNC cables (length less than 20 inches/500mm) 3.3 Digital m ulti-meters, one with 20A range and ideally [...]

  • Page 3

    3 4.1 Connect one lead from the “+” lead of the DC source (S ee Item 3.1) to the “20A” terminal of the first multi-meter DVM1 (See Item 3.3). Then connect one lead from the “Common” of the DVM1 to the “Vin” pin of the Evaluation Board. DVM1 is used to measure the input current. 4.2 Connect one wire from the “-” lead of the DC so[...]

  • Page 4

    4 6.0 T est s Performed The following tests are p erformed at room temperature (+25 ℃ ). 6.1 Input Characteristics  Input V oltage Range.  Under-V oltage Lockout.  No Load Input Current. 6.2 Output Characteristics  Line Regulation.  Load Regulation.  Output Regulation.  Output V oltage Set-point Programming  Output V oltag[...]

  • Page 5

    5 5) SW2 is used to enable or disable the converter . For positive logic module, When SW2 is pose for the ON position, the converter is ON, and SW2 is pose for the OFF position, the converter is OFF . For negative logic module, When SW2 is pose for the ON position, the converter is OFF , and SW2 is pose for the OFF position, the converter is ON. 6)[...]

  • Page 6

    6 8.0 T est s and Evaluation 8.1 Input Characteristics 8.1.1 Input V oltage Range and Under-V olt age Lockout The DNM04xx and DNL04xx Series of DC/DC converters will operate at full load from 2.4Vin to 5.5Vin for 5Vin (nominal) types. The DNM12xx and DNL12xx Series DC/DC converters will operate at full load from 10V in to 14Vin for 12V in (nominal)[...]

  • Page 7

    7 8.2 Output Characteristics 8.2.1 Line Regulation Line Regulation Deviation is defined as the change in output volt age caused by varying the input voltage over a specified range while the ou tput load and temperature remain const ant. T est 1) T urn on the fan. 2) Set the output power to the desired operating point. 3) Set the switch SW2 to the c[...]

  • Page 8

    8 8.2.4 Output V olt age Set-point Programming (1) Output V olt age Set-Point Ad justment by external resistor Output V oltage Set-point Programming can be carried out by using the external program resistor connect between TRIM pin to ground to set output volt age set-point from 0.75Vdc to 5Vdc, the location can refer to the Evaluation Board Schema[...]

  • Page 9

    T able 2. Vo , s e t Rset (k Ω ) R33 Recommend Value, R//R 0.7525 Open Open 1.2 22.464 23.7k//432k 1.5 13.047 14.0k//191k 1.8 9.024 9.53k//169k 2.5 5.009 5.23k//118k 3.3 3.122 3.16k//261k 5.0 1.472 1.5k//78.7k T est 1. Put the resistor to program the desired output voltage set point by follow T able 1 and T able 2 for the standard output. 2. Set [...]

  • Page 10

    For DNM12xx and DNL12xx series () 7525 . 0 0667 . 0 7 . 0 − × − = Vout Vtrim V For example, to program the output voltage of a DNL12 module to 3.3 Vdc, Vtrim is calculated as follows: () 53 . 0 7525 . 0 3 . 3 0667 . 0 7 . 0 = − × − = Vtrim V T able 4. : V o,set adjustment range using external voltage source. Product Part Normal Output Set[...]

  • Page 11

    11 8.2.6 Voltage Tracking The DNM/DNL family was designed for applications that have output voltage tracking requirements during power-up and power-down. The devices have a TRACK pin to implement three types of tracking method: sequential, rati o-metric and simultaneous. TRACK simplifies the task of supply voltage tracking in a power system by enab[...]

  • Page 12

    12 Figure 4: Sequential Power up Figure 5: Sequential Power down Ratio-Metric Implementation Ratio–metric is implemented by the selection of the resistor values of the voltage divider on the TRACK pin. Resistors R1 and R2, in Figure 6 determine the tracking met hod that is implemented. To simplify the tracking design, R2 initial set value equal 2[...]

  • Page 13

    For Ratio-Metric applications that need the PS1 and PS2 outputs arrive regulation set point at same time, use equation 1 to calculate R1, set △ V=Vo set,PS1 –Vo set,PS2 and △ V will be negative. The waveforms of power up and down are showed in Figures 7 and 8. K Vref Vref V Vo R PS set 20 * ] ) [( 1 2 , − ∆ + = Ω -----------------------[...]

  • Page 14

    14 For example, the PS1 Vo set,PS1 =5V, the PS2 Vo set,PS2 =3.3V, R1 is calculated as follows: K K R 303 . 10 20 * 32 . 1 ] 32 . 1 ) 3 . 1 3 . 3 [( 1 = − − = Ω Figure 9. Ratio–metric tra cking Power up Figure 10. Ratio–metric tracking Power down Simultaneous Implementation Similar to the ratio-metric implementation, simultaneous tracking [...]

  • Page 15

    15 For type C (DNXXX0A0XXXX C ), th e simultaneous tracking can be accomplished by putting R1 equal to 30.1K Ω through Vo PS1 to the TRACK pin of PS2. Figure 12 shows the circuit diagram of Simultaneous start-up when Vo PS2 tracks the Vo PS1 (only for type C). R1 R2 TRACK Vo PS1 PS2 Vo PS2 PS1 Vin Vin ENABLE ENABLE To Tracking circuit 20K 30.1K Fi[...]

  • Page 16

    16 Notes on the use of Track function: 1. For proper voltage tracking, first, The ENABLE On/Off pin of the PS2 module is lef t unconnected (or tied to GND for negative logic modules or tied to VIN for positive logic modules), so that the modules are ON by default and second applied input voltage to the PS1 and PS2. The TRACK pin is held at ground p[...]

  • Page 17

    T est 1) T urn on the fan. 2) Adjust the input voltage to the desired operating point. 3) Set the electronic or resistive load at 50% of maximum load. 4) Change channel 1 to scope probe and measure across the dynamic R . 5) Set the switch SW2 to the converter ON. 6) Set channel 2 on the oscillo scope to be AC coupled and to 50mV/Div and for 5mS/Div[...]

  • Page 18

    4. Connect a scope probe from channel 1 between the on/off control pin and re ference ground (SGND) on the Evaluation Board. 5. Set channel 2 on the oscilloscope to be DC coupled and within appropriate range fo r the output voltage. 6. Connect a coaxial cable from channel 2 to BNC2 on the Evaluation Board. 7. Set the T ime base to 2mS/Div 8. Set th[...]

  • Page 19

    Appendix A- Evaluation Board Schematic 19[...]

  • Page 20

    Appendix B - Evaluation Board Layout (Top View) Appendix C - Evaluation Board Layout (Bottom View) CONTACT DATA: www. delt aww.c om USA: Telephone: East Coast: (888) 335 8201 West Coast: (888) 335 8208 Fax: (978) 656 3964 Email: DCDC@delta-corp.com Europe: Telephone: France: +33 1 6485 1212 Germany: +49 89 370 62 897 UK: +44 777 195 6299 Fax: +33 1[...]